1 / 41

Priv.-Doz. Dr. Carsten Wolters Dr.rer.nat. Harald Kugel Drd. Gabriel Möddel

Moderne nicht-invasive Methoden zur Erforschung des menschlichen Gehirns: Einführung und Motivation(Teil 2). Priv.-Doz. Dr. Carsten Wolters Dr.rer.nat. Harald Kugel Dr.med. Gabriel Möddel Priv.Doz. Dr. med. Christoph Kellinghaus. Vorlesung, 29.Oktober 2013. Outline.

sonel
Download Presentation

Priv.-Doz. Dr. Carsten Wolters Dr.rer.nat. Harald Kugel Drd. Gabriel Möddel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Moderne nicht-invasive Methoden zur Erforschung des menschlichen Gehirns:Einführung und Motivation(Teil 2) Priv.-Doz. Dr. Carsten Wolters Dr.rer.nat. Harald Kugel Dr.med. Gabriel Möddel Priv.Doz. Dr. med. Christoph Kellinghaus Vorlesung, 29.Oktober 2013

  2. Outline • Updated planning for the lecture • Further introduction to the lecture • Serving as a subject in our DFG-project

  3. Aktuelle Vorlesungsplanung • 15.Oktober: Vorbesprechung und erste Einführung und Motivation (Wolters) • 22.Oktober: Einführung Magnetresonanztomographie (MRT) (Kugel) • 29.Oktober: Weitere Einführung und Motivation zur Vorlesung (Vorwerk, Wagner, Lucka, Wolters) • 5.Nov.: Einführung Magnetresonanztomographie (MRT), Teil 2 (DTI, fMRI, k-Raum) (Kugel) • 12.Nov.: Mathematisch-physikalische Modellierungsgrundlagen zu EEG und MEG (Wolters) • 19.Nov.: Grundlagen von Epilepsie und EEG (Kellinghaus) • 26.Nov.: Epileptische Anfälle und ihre Behandlung (Kellinghaus) • 3.Dez.: Registrierung von MRT: Teil 1 (Wolters) • 10.Dez3.: Registrierung von MRT: Teil 2 (Wolters) • 17.Dez.: Segmentierung von MRT (Wolters) • 7.Jan.: Mathematik des EEG/MEG Vorwärtsproblems, Teil 1 (Wolters) • 14.Jan.: Mathematik des EEG/MEG Vorwärtsproblems, Teil 2 (Wolters) • 21.Jan.: Mathematik des EEG/MEG inversen Problems, Teil 1 (Wolters) • 28.Jan.: Mathematik des EEG/MEG inversen Problems, Teil 2 (Wolters) • 4.Feb.: Epilepsiechirurgie, Teil 3 (Möddel)

  4. Outline • Updated planning for the lecture • Further introduction to the lecture • Serving as a subject in our DFG-project

  5. EEG and MEG source analysis: Source model and the forward problem

  6. Gray and White Matter Gray matter (GM) White matter (WM) T1 weighted Magnetic Resonance Image (T1-MRI)

  7. The source model Microscopic current flow (~5×10-5 nAm) cortex + - source synapse + - - sink cell body Equivalent Current Dipole (Primary current) (~50 nAm) parameters: Size of Macroscopic Neural Activity position : x0 moment : M ~30 mm2 = 5.5×5.5 mm2

  8. EEG forward problem Place a dipole Compute the EEG Simulate quasistatic Maxwell equations

  9. MEG forward problem Place a dipole Compute the MEG Simulate quasistatic Maxwell equations

  10. A 5 compartment volume conductor model

  11. Three-layered human skull

  12. Anisotropy of white matter (WM) Transversally: 1 Longitudinally: 9

  13. Volume conductor modeling Finite Element (FE) Boundary element Spherical shells

  14. State-of-the-art finite element volume conductor model [Pursiainen, Lucka & Wolters, Phys Med Biol, 2012] [Drechsler, Wolters, Dierkes & Grasedyck, NeuroImage, 2009] [Lew, Wolters, Dierkes, Röer & MacLeod, Appl. Num. Math., 2009] [Wolters, Köstler, Möller, Härtlein, Grasedyck & Hackbusch, SIAM Journal on Scientific Computing, 2007] [Wolters, Anwander, Berti & Hartmann, IEEE Trans Biomed.Eng., 2007] [Wolters, Anwander, Reitzinger & Kuhn, Comp.Vis.Sci., 2002]

  15. Validation of forward and inverse modeling

  16. Multilayer sphere model 4-layer sphere model with 3-layer skull: Radii: 92, 86:84:82:80, 78mm; Cond.: 0.33, 0.0062:0.021:0.0049, 1.79, 0.33 S/m Sources: Depth from midpoint to CSF boundary 134 regularly distributed electrodes: On a sphere with radius: 92mm Needle electrode (“point in space”)

  17. [Drechsler, Wolters, Dierkes, Si & Grasedyck, NeuroImage, 2009] Constrained Delaunay Tetrahedralization Tetrahedra mesh: Coarse in brain, fine in CSF/skull/skin compartment: Nodes: 360,056 Elements: 2,165,281

  18. Validation: FEM validated with analytic [Drechsler, Wolters, Dierkes & Grasedyck, NeuroImage, 2009] [Lew, Wolters, Dierkes, Röer & MacLeod, Appl. Num. Math., 2009] [Wolters, Köstler, Möller, Härtlein, Grasedyck & Hackbusch, SIAM Journal on Scientific Computing, 2007] [Wolters, Anwander, Berti & Hartmann, IEEE Trans Biomed.Eng., 2007] [Wolters, Anwander, Reitzinger & Kuhn, Comp.Vis.Sci., 2002] 4% 3% 2% 1% 0% 15% 10% 5% 0%

  19. Analytic forward, FEM based dipole fit inverse:localization error due to numerical error

  20. Evoked Potentials (EP) and Fields (EF)

  21. Auditory evoked potentials (AEP) and Fields (AEF)

  22. [Gazzaniga, Ivry & Mangun, Cognitive Neuroscience, 2nd ed., W.W.Norton & Company, 2002] Evoked responses

  23. [Gazzaniga, Ivry & Mangun, Cognitive Neuroscience, 2nd ed., W.W.Norton & Company, 2002] Auditory evoked potential (AEP) Only contralateral path is shown.

  24. Tonotopy in auditory cortex:Preliminary results • Combined EEG/MEG measurement in lying position • presentation of 800ms sine tones • 350, 1400 and 5600Hz • Stimulus Offset Asynchrony (SOA) of 3.5 to 4.5sec • 3rd order synthetic gradiometer • Baseline correction using -200ms to 0ms • 1-20 Hz filter • Voltage-threshold-based eye artefact rejection

  25. MGFP

  26. SNR

  27. 350 Hz Example Signals A0206 MEG SNR: 14.0 EEG SNR: 18.2 MEG SNR: 8.3 EEG SNR: 12.5 5600 Hz 1400 Hz MEG SNR: 14.5 EEG SNR: 13.9

  28. Example Topographies A0206 350 Hz 5600 Hz 1400 Hz

  29. Two dipole Solution

  30. Auditory tonotopy: Preliminary results Discussion and outlook Result1: 2 of 3 subjects show a trend of more medially localized dipoles with increasing frequency, in agreement with findings of (Pantev et al., 1988; Yamamato et al., 1988; Lütkenhöner et al., 1998). Result2: No trend was observed for inferior-superior or anterior-posterior locations. Outlook: Additional subjects will be studied to obtain statistically more significant results.

  31. Somatosensory evoked potentials (SEP) and Fields (SEF)

  32. SEP/SEF source analysis using the FEM

  33. EEG/MEG calibration using SEP/SEF data [Wolters, Lew, Hämäläinen & MacLeod, Proc. DGBMT, 2010] EEG SNR: 24dB MEG SNR: 30dB • Brain conductivity of 0.332 S/m • Skull conductivity of 0.0133 S/m (=> brain:skull ratio of 25) • Explained variance; SEP 93%, SEF 96.1%

  34. [Lanfer, diploma thesis, 2007] SEP/SEF source analysis results SEP dipole (red) and SEF dipole (blue)

  35. S1 and M1 homunculi

  36. [Roberts, Poeppel and Rowley, MEG and magnetic source imaging, Neuropsychiatry Neuropsych.Behav.Neurol., 11, pp.49-64, 1998] Clinical applicability of SEP/SEF source analysis Tumor near the central sulcus

  37. [Roberts, Poeppel and Rowley, MEG and magnetic source imaging, Neuropsychiatry Neuropsych.Behav.Neurol., 11, pp.49-64, 1998] Clinical applicability of SEP/SEF source analysis Tactile stimulation of the right index finger: SEF (left) and fitted dipole (right)

  38. [Roberts, Poeppel and Rowley, MEG and magnetic source imaging, Neuropsychiatry Neuropsych.Behav.Neurol., 11, pp.49-64, 1998] Clinical applicability of SEP/SEF source analysis Tumor (green) and MEG dipole fits (red) for continuous stimulation of fingers and toes

  39. Outline • Literature for this lecture • Introduction to the lecture • Serving as a subject in our DFG-project

  40. Serving as a subject for our epilepsy project Institut für Biomagnetismus und Biosignalanalyse Malmedyweg 15 Direkt hinter der HNO Klinik http://biomag.uni-muenster.de carsten.wolters@uni-muenster.de

  41. Thank you for your attention!

More Related