280 likes | 410 Views
Spherical and cylindrical nanolayers: electronic states, quantum transitions Hayk Sarkisyan Russian-Armenian (Slavonic) University Yerevan State University. The idea of size-quantisation. Some geometries of quantum dots. Fulerens and nanotubes. Z. R 1. R 2. Z. O. Y. R 1. R 2. X. O.
E N D
Spherical and cylindrical nanolayers: electronic states, quantum transitionsHayk SarkisyanRussian-Armenian (Slavonic) UniversityYerevan State University
Z R1 R2 Z O Y R1 R2 X O L Simple models of layered systems Spherical layer QD Cylindrical layer QD
Fig. 1. GaInAs quantum ringsLorkeet al (Phys. Rev. Lett.84, 2223 (2000)). 250250 нм2.
Fig. 2. Bound structures of quantum layer
Fig. 3. Chakraborty-Pietilainen model (Phys. Rev. Lett.84, 2223 (2000)) Fig. 4. Smorodinsky-Winternitz model (Yadernaya fizika4, 625 (1966)).
2 1 Fig. 5. Difference between potentials profiles: 1. Chakraborty-Pietilainen model, 2. Smorodinsky-Winternitz model
z R1 R2 L o 1. Parameters of quantum ring Experimental data (Lorkeetal - Phys. Rev. Lett.84, 2223 (2000)) quantum ring –InAs coating – GaAs inner radius – 10 nm outer radius – from 30 to 70 nm thickness – 2 nm Cylindrical layer quantum dot
2. Models of confining potentials –Chakraborty-Pietilainen model (Phys. Rev.B 50, 8460 (1994)). 1. –Model of the impenetrable cylindrical layer quantum dot (Physica E 36, 114 (2007) ) 2. 3. – Smorodinsky-Winternitz model (Yadernaya fizika4, 625 (1966)). 4. –Radial analog of the Smorodinsky-Winternitz potential
–effective mass of the electron (–hole ) F(a,b,x) – confluent hypergeometrical function.
z R2 R1 L o 5. Influence of electric field
x z R2 R1 o L 6. Rotator model
Rotational levels Radial level
7. Electronic states in the spherical nanolayer1. E.M. Kazaryan, A.A. Kostanyan, H.A. Sarkisyan, J. Cont. Phys. (2007).2. M.A. Zuhair, A.Kh. Manaselyan, H.A. Sarkisyan, J. Phys.: Conf. Ser. (2008).
Parabolic quantum well with hydrogen-like impurity 1A. A. Gusev, et al, Phys. At. Nucl., 2010, Vol. 73, (accepted).