1 / 6

Clár

Select the proof required then click mouse key to view proof. Clár. Teoirim 4 Suimíonn an 3 uillinn I dtriantán suas go 180 céim. Teoirim 6 Tá an uillinn seachtrach I dtriantán cothrom le suim an dá uillinn urchomhaireacht inmheánach.

Download Presentation

Clár

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Select the proof required then click mouse key to view proof. Clár Teoirim 4 Suimíonn an 3 uillinn I dtriantánsuas go 180 céim. Teoirim 6 Tá an uillinnseachtrach I dtriantáncothrom le suim an dáuillinnurchomhaireachtinmheánach. Theorem 9 Tásleasaurchomhaireachaagusuillnneachaurchomaireacha I gcomhthreomharánarcomhéid (agus a mhalairt ) Teoirim14 I dtriantándronuilleachtá fad an tsleasaoscomhairnadronuillinnecothrom le suimfhadcearnaithe an dáshlioseile. (Pythagorais) Teoirim 19 Tátomhasnahullinneaglárciorcailcothrom le dháoiread thomhasnauillinneag an imlíneagseasamhar an stualcéanna Constructions Sketches Quit

  2. 4 5 3 1 2 Teoirim 4:Suimíonn an 3 uillinnidtriantánsuas go 1800 . Use mouse clicks to see proof Tugtha:Triantán CruthúÐ3 + Ð4 + Ð5 = 1800Line Direach Ð1 = Ð4 agusÐ2 = Ð5 Ailtéarnach ÞÐ3 + Ð1 + Ð2 = 1800 Ð1 + Ð2 + Ð3 = 1800 Q.E.D. Le Cruthú:Ð1 + Ð2 + Ð3 = 1800 Tógáil:TarrainglínetríÐ3 comhthreomhar leis an mbonn Constructions Sketches Menu Quit

  3. 90 45 135 3 0 180 1 2 4 Teoirim6:Tá an uillinnsheachtrachidtriantáncothrom le suim an dáuillinnurchomhaireachinmheánach. Use mouse clicks to see proof Le Cruthú:Ð1 = Ð3 + Ð4 Cruthú:Ð1 + Ð2 = 1800 …………..LíneDíreach Ð2 + Ð3 + Ð4 = 1800 ………….. Teoirim 2 (3 uillinni ∆ = 1800). Þ Ð1 + Ð2 = Ð2 + Ð3 + Ð4 Þ Ð1 = Ð3 + Ð4 Q.E.D. Constructions Sketches Menu Quit

  4. B C A D Teoirim 9: I gComhthreomharán, tánasleasaurchomhaireachaagusnahuillinneachaurchomhaireacha,, faoiseach, cothromlenachéile. Use mouse clicks to see proof Tugtha:Comhthreomharán ABCD Le Cruthú:|AB| = |CD| agus|AD| = |BC| agusÐABC = ÐADC 3 4 TógáílTarraing an trasnán |AC| 1 Cruthú:Sa triantán ABC agussatriantán ADC 2 Ð1 = Ð4 …….. Ailtéarnach Ð2 = Ð3 ……… Ailtéarnach |AC| = |AC| …… Comónta Þ Tá an triantán ABC comhionann leis an triantán ADC……… USU = USU. Þ|AB| = |CD| agus |AD| = |BC| agusÐABC = ÐADC Q.E.D Constructions Sketches Menu Quit

  5. b a a c b c c c a b b a Teoirim 14 I dtriantándronuilleachtá fad an tsleasaoscomhairnadronuillinnecothrom le suimfhadcearnaithe an dáshlioseile. Úsáid do luch chun cliceáil Tugtha : An Triantánabc Le Cruthú:a2 + b2 = c2 Tógáil3 Thriantándronuilleach mar léirithe Cruthú:Acharna móire. = acharna bige + 4(acharD) (a + b)2 = c2 + 4(½ab) a2 + 2ab +b2 = c2 + 2ab a2 + b2 = c2 Q.E.D. Constructions Sketches Menu Quit

  6. A O R C B Teoirim19:Tátomhasnahullinneaglárciorcailcothrom le dháoiread thomhasnauillinneag an imlíneagseasamhar an stualcéanna . Dein cliceáil ar do luch chun gach céim a fheiscint Le Cruthú:| ÐBOC| = 2 | ÐBAC | 5 2 Tógáil:CeangailA le O agussínigh é amach go R Cruthú: Sa triantánAOB 4 1 3 | OA| = | OB | …… Is gathannaiadaraon Þ | Ð2 | = | Ð3 | …… Triantáncomhchosach | Ð1 | = | Ð2 | + | Ð3 | …… Uillinnsheachtrach Þ | Ð1 | = | Ð2 | + | Ð2 | Þ | Ð1 | = 2| Ð2 | Mar an gcéannasatriantáneile | Ð4 | = 2| Ð5 | Q.E.D Þ | ÐBOC | = 2 | ÐBAC | Constructions Sketches Menu Quit

More Related