1 / 18

Rei Okuda , Tsuneo Hirano and Umpei Nagashima

WG01. Too Short CN Bond Length, Experimentally Found in Cobalt Cyanide: An ab Initio Molecular Orbital Study. Rei Okuda , Tsuneo Hirano and Umpei Nagashima . Grid Technology Research Center, AIST, Japan. FeNC. CoCN. Exp. (MW) Sheridan and Ziurys (2004). Exp. (LIF) Lie & Dagdian (2001).

sorcha
Download Presentation

Rei Okuda , Tsuneo Hirano and Umpei Nagashima

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. WG01 Too Short CN Bond Length, Experimentally Found in Cobalt Cyanide: An ab Initio Molecular Orbital Study Rei Okuda, Tsuneo Hirano and Umpei Nagashima Grid Technology Research Center, AIST, Japan

  2. FeNC CoCN Exp. (MW) Sheridan and Ziurys (2004) Exp. (LIF) Lie & Dagdian (2001) B0(3F4) = 4208.827(23) MHz B0 = 0.1452 (2) cm-1 B0 (6D9/2) = 0.14447(13) cm-1 1.03(8) Å 2.01(5) Å 1.88270 Å 1.13133Å Fe ----------- N ----- C Co ---------- C ----- N 1.182 Å re Calc. 1.168 Å re Calc. 1.935 Å 1.854 Å Be= 0.14251 cm-1, B0 = 0.14341 cm-1 Be= 4209.9 MHz NiCN Exp. (LIF) Kingston, Merer, Varberg (2002) B0 (2D5/2) = 0.1444334(30) cm-1 However, difference in B0 is small: (MW) Sheridan, Ziurys (2003) B0 (2D5/2) = 0.14443515(5) cm-1 FeNCcalc -1.2 % NiCNcalc 1.1 % LIF 1.8292(28) Å 1.1591(29) Å r0(2D5/2) MW 1.8293(1) Å 1.1590(1) Å r0(2D5/2) Ni ---------- C ------ N Calc. 1.811 Å 1.166 Å re Be = 0.14590 cm-1, B0(2D5/2) = 0.14595 cm-1 DeYonker, et al. (2004, JCP) (MR-SDCI+Q) re(Fe-N) = 1.940 Å re(C-N) = 1.182 Å →Be = 0.1420 cm-1

  3. Our Calc. level: FeNC, CoCN, and NiCN MR-SDCI+Q + Erel C-N Bond length / Å FeNC CoCN NiCN Obs. (r0) 1.03(8) 1.131 1.159 Calc. (re) 1.182 1.168 1.166 Difference -0.15 -0.037 -0.007 cf. Exp. r0(NC): MgNC 1.169 Å AlNC 1.171 Å CN 1.172 Å cf. Calc. (Hirano, et al. JMS, 2002) re(NC) MgNC 1.1814 Å • Ionicity (Metal-Ligand) can be estimated from the C-N bond length: Md+-(CN)d- The transferred electron goes into p*(CN) orbitals weaken the CN bond. (i.e. lengthen the CN bond). Hence, the iconicity of the Metal-Ligand bond should be in this order, Fe-NC > Co-CN > Ni-CN (from ab initiore ) • And, hence, floppiness in bending motion should be Fe-NC > Co-CN > Ni-CN , since the more ionic, the more floppy.

  4. Model (a) We have to switch the concept of bending motion. (24) Mg (26) N C Model (b) can explain the the reverse order in r0 : Fe-NC < Co-CN < Ni-CN Model (b) C (59) Co (26) N G Our Calc. level: FeNC, CoCN, and NiCN MR-SDCI+Q + Erel C-N Bond length / Å FeNC CoCN NiCN Obs. (r0) 1.03(8) 1.131 1.159 Calc. (re) 1.182 1.168 1.166 Difference -0.15 -0.037 -0.007 cf. Exp. r0(NC): MgNC 1.169 Å AlNC 1.171 Å CN 1.172 Å cf. Calc. (Hirano, et al. JMS, 2002) re(NC) MgNC 1.1814 Å Now,we know Ionicity and, hence, floppiness: Fe-NC > Co-CN > Ni-CN How do we rationalize the reverse order in r0 ? r0: Fe-NC < Co-CN < Ni-CN To go further, we need the knowledge of the Three-dimensional Potential Energy Surfaces.

  5. Multireference-SDCI / [Roos ANO (Co), aug-pVQZ (C,N)] Active spaces: 3s,3p, 3d, 4s (Co) and 2s, 2p (C,N) Ab Initio MO calculations on First-row Transition Metal Radicals: Difficult. •Open 3d shells many quasi-degenerated states • In many cases, a state should be described by Multi-Configuration. • Must keep Correct Degeneracy in Symmetry when the radical is treated in C2v symmetry, instead of Cv. • Linear molecule under C2v Difficulty to avoid mixing, especially, between 3F and 3P states. • Relativistic effect correction should be necessary for Spectroscopic Accuracy Relativistic correction by Cowan-Griffin approach in perturbation method

  6. Details of MO Calculations • Wavefunction • Construction of MCSCF guess by merging Co+ (3F) and CN- (1S) MCSCF orbitals • Multi-Reference Single and Double Configuration Interaction (MR-SDCI) -- Davidson’s type corrections were added to the MR-SDCI calculation (denoted as +Q). • The relativistic corrections (Erel) have been included using the Cowan-Griffin approach by computing expectation values of the mass-velocity and one-electron Darwin terms. • Active space • 3s, 3p, 3d and 4s shells of Co, and 2s and 2p shells of CN • Program • MOLPORO2002 suite of quantum chemistry programs

  7. Potential Energy Curves of CoCN: MR-SDCI+Q+Erel • Quintet State • R(C-N) = 1.17、∠CoCN = 180.0 • Triplet State • r(C-N) = 1.17、∠CoCN = 180.0 5Σ 3Π 5Π 3Σ Energy(Hartree) 3Δ 5Δ Only 0.0036 hartree= 802 cm-1 5Φ 3Φ r(Co-C) r(Co-C) The ground state is predicted to be 3F state

  8. Molecular constant of CoCN X3F MR-SDCI+Q+Erel Calc. Exp. 3F4a) Calc. Exp. 3F4a) re(Co-C) /Å 1.85411.8827(7) (r0)wexe(11) /cm-1 -10.9 re(C-N) /Å1.1677 1.1313(10)(r0)wexe (22) /cm-1 -7.7 ae(Co-C-N)/deg 180.0 180.0 wexe (33) /cm-1 -2.2 Be /MHz 4209.9wexe(12) /cm-1 -3.4 B0 /MHz 4234.8b4208.827(23)wexe (13) /cm-1 -4.4 DJ /MHz 0.001080.001451(10)wexe (23) /cm-1 35.6 Ee /Eh -1484.7591917 g22 /cm-1 8.0 a1 /MHz 10.5 n1(C-N) /cm-1 2163 a2 /MHz -24.7 n2 (Co-C-N) /cm-1 239 a3 /MHz -12.1 n3(Co-C) /cm-1 571 ~478 (?) w1(C-N)/cm-1 2191 Zero-Point E./cm-11608 w2(Co-C-N) /cm-1 238z12/cm-1 -0.98 w3(Co-C) /cm-1 542 z 23/cm-1 -0.22 Aso /cm-1-242 -133.3 (assumed)L-doubling/cm-10.00018 [cf. CoH (3F) -242.7]c me /D -6.993 (Expec. Value -7.464) a (MW) Sheridan, et al. (2004). b Difference 0.6 %c Varberg, et al. (1989)

  9. -1484.66 1Φ -1484.67 -1484.68 -1484.69 19050 cm-1 -1484.70 -1484.71 -1484.72 -1484.73 5Φ -1484.74 3Δ -1484.75 3Φ -1484.76 -1484.77 1.80 1.85 1.90 1.95 2.00 2.05 2.10 The perturber 1F could bethe 3D state ( ~ 802 cm-1 above). 3F3↔ 3D3 Spin-orbit Interaction Scheme, Sheridan, Flory, and Ziurys (2004) ? MR-SDCI+Q+Erel ASO = -242 cm-1 (cf. CoH -242.7 cm-1) DE(1F – 3F) = ~ 31 cm-1 ASO(3F) = -133.3 cm-1 (assumed)

  10. C-N Bond length / Å FeNC CoCN NiCN Obs. (r0) 1.03(8) 1.131 1.159 Calc. (re) 1.182 1.168 1.166 Difference -0.15 -0.037 -0.007 (%) -12.9 -3.2 -0.6 Model (a) (24) Mg (26) N C Model (b) C (59) Co (26) N G Summary Our Model (b) and ab inito calculations can rationalize the discrepancies. Then, WHAT does the experimentally obtained r0 values for CoCN mean ? The difference between experimental and predicted values indicates the existence of large-amplitude bending motion. However, experimentally derived r0 value, in this case, has No-physical meaning for the understanding of the chemical bond except showing how floppy the molecule is in bending motion. We need to explore a new methodto derive physically-sound, and meaningful r0 from experiments for this type of floppy molecule !!!

  11. Acknowledgment: We thank Prof. Ziurys and Sheridan, University of Arizona, for providing us the detailed information on B0 and r0’s of CoCN prior to their publication.

  12. Calc. Exp.a Calc. Exp.a re(Fe-N) /Å 1.93542.01 ± 0.05 (r0)wexe(11) /cm-1 -12.9 re(N-C) /Å1.1823 1.03± 0.05 (r0)wexe (22) /cm-1 -3.5 ae(Fe-N-C)/deg 180.0 180.0wexe (33) /cm-1 -2.5 Be /cm-10.14251wexe(12) /cm-1 -4.5 B0 /cm-10.14337b0.1452(2) wexe (23) /cm-1 9.4 DJ x 108/cm-1 4.83g22 /cm-1 2.50 Ee /Eh -1364.1941735 n1(N-C) /cm-1 2058 a1 /cm-1 0.00057 n2 (Fe-N-C) /cm-1 103 a2 /cm-1-0.00147n3(Fe-N) /cm-1 478 464.1± 4.2 a3 /cm-10.00066Zero-Point E./cm-1 138 w1(N-C)/cm-12090z12/cm-1-0.97 w2(Fe-N-C) /cm-1 109 z23/cm-1-0.24 w3(Fe-N) /cm-1 476 L-doubling/cm-1 0.00382 Aso /cm-1-85.4 [cf. FeF (6D) -76]cme /D -4.59 (Expec. Value -4.74) a(LIF) Lie & Dagdian (2001). b difference -1.3 %c Allen and Ziurys (1997) FeNC X6D MR-SDCI+Q+Erel/[Roos ANO(Fe), aug-cc-pVQZ(N,C)]

  13. MgNC (X2S+) ACPF/TZ2p+f Microwave exp. (core-valence) (Kagi, et al.a) B /MHz 5969.3 5966.8969 0 D /MHz 0.0029 0.0042338 0 w -1 /cm 90.4 86 2 a B /MHz -78.5 -70.2 2 Kawaguchi, Kagi, Hirano, et al. 1993 a MgCN (X2S+) ACPF/TZ2p+f Microwave exp. (core-valence) (Anderson,et al.b) B /MHz 5089.3 5094.80351 0 D /MHz 0.0025 0.00277421 0 Anderson, et al. 1994 b 1992 Summer at Nobeyama MgCN ? • Ishii, Hirano: ab Initio Calculations Should be MgNC ! (ApJ, 1993) • Kagi, Kawaguchi, Hirano, Takano, and Saito: Microwave experiments Obsd. Sep., 1992 (ApJ, 1993) MgNC & MgCN Guélin, et al. (Astrophys. J, 1986) U-lines toward IRC + 10216 Carbon star B0 = 5966.82 MHz, Linear molecule (2S) HSiCC, HCCSi, HSCC, CCCl, etc.?

  14. Rotational Constants (B0) Unit in cm-1 Exp. Previous Calcs. Our Calc. 12D5/2 0.60284 (0.0%) FeN 0.602793(17) 0.60280246(25) DFT 0.5693 (-5.6 %) DFT 0.6099 (1.2 %) FeS 15Di 0.20246 (0.6%) 0.20368 MR-ACPF 0.1911 (-6.2 %) DFT 0.2011 (-1.3 %) 13Di FeC 0.66966 (-0.5%) 0.67291212(6) MR-SDCI 0.6754 (0.4 %) MR-SDCI 0.6623 (-1.6 %) 0.54955 (-0.5%) 23D3 0.55321(15) 0.5521(10) MR-SDCI 0.5298 (4.0 %) MR-SDCI 0.5388 (-2.4 %) 43D2 0.56153 (-0.5%) MR-SDCI 0.5417 (-4.0 %) 0.56442(15) →The error of predicted B0 : 0.5 – 0.6 %

  15. Predicted Spectroscopic Constants of CoCN with Roos ANO (Co), aug-pVQZ (C,N)

  16. CoH (X 3F): Experimental values re/År0/Å        we/cm-1n/cm-1a/cm-1E(5F - 3F) /cm-1 • Stevens, et al. (1987) 6625 ± 110 • Lipus, et al. (1989) 1926.7 1857.5 0.21974 • S. Beaton, K.M. Evenson, J. Brown. (1994) FIR-LMR 1.5138435(80)  1.5252* • R.S. Ram, P.F. Bernath, and S.P. Davis (1996) IR-emission FT (W=4) 1.531291(8) 1.54262(W = 4)*     1858.7932(32) 0.212444(93) [1.5160 * 1.5271* ]       (W=3) 1.5170** 1.5280**  *Corrected by us for Spin-Orbit interaction ** Calcd. by us from their B0 value.

  17. CoH : Correction of Spin-Orbit Interaction and Rovibrational Interaction • Ram, Bernath, Davis, J. Mol. Spectrosc. 175, 1-6 (1996) • re = 1.531291(8) A • equilibrium internuclear distance of the lowest spin component in the 3Φ4electronic ground state • Uncorrected spin-orbit correction • Bv,ω= B0+(2B02/Aso*L)*Σ • Aso (spin-orbit interaction constant) • L(orbital angular momentum)=3(Φstate) • separation between Ω=3 and Ω=4 =-728cm-1(=Aso*L) • Ω=|L+Σ| middle level of3Φ, 3Φ3 Ω=3 、Σ = 0 • B0 and B1 can give extrapolation vale to re • Spin-orbit correction gives re = 1.5170 • They corrected rovibration interaction • a was measured by the difference of Bv,ω between v = 0 and v=1 of a Ωstate • Bv,j = Be+α*(v + 1/2)*(J+1) • B0 = Be + 0.5*α (v = 0、rotational quantum number = 0) • Beaton, Evenson, Brown, J. Mol. Spectrosc. 164, 395-415 (1994) • re = 1.5138435(80) A • equilibrium internuclear distance of 3Φ electronic ground state ensemble • Rotation constant B0 for ground state ensemble was determined by using Analysis of both observed 3Φ4 and 3Φ3 sublevels, (3Φ2 was not observed).

  18. CoH : Spin Orbit Splitting with Breit-Pauli g) T. D. Varberg et al. J. Mol. Spectrosc. 138, 638(1989)

More Related