1 / 26

Divide and Conquer

0. Divide and Conquer. The most well known algorithm design strategy: Divide instance of problem into two or more smaller instances Solve smaller instances recursively Obtain solution to original (larger) instance by combining these solutions. 0. Divide-and-conquer technique.

southern
Download Presentation

Divide and Conquer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 0 Divide and Conquer The most well known algorithm design strategy: • Divide instance of problem into two or more smaller instances • Solve smaller instances recursively • Obtain solution to original (larger) instance by combining these solutions

  2. 0 Divide-and-conquer technique a problem of size n subproblem 1 of size n/2 subproblem 2 of size n/2 a solution to subproblem 1 a solution to subproblem 2 a solution to the original problem

  3. 0 Divide and Conquer Examples • Sorting: mergesort and quicksortO(n2)  O(n log n) • Closest-pair algorithmO(n2)  O(n log n) • Matrix multiplication Strassen’sO(n3)  O(nlog 7) = O(n2.8) • Convex hull-QuickHull algorithmO(n3)  O(n2 log n)

  4. 0 General Divide and Conquer recurrence: T(n) = aT(n/b) + f (n)where f (n)=Θ(nk) • a < bk T(n) =Θ(nk) • a = bk T(n) =Θ(nk lg n ) • a > bk T(n) =Θ(nlog b a)

  5. 0 Efficiency of mergesort • All cases have same time efficiency: Θ( n log n) • Number of comparisons is close to theoretical minimum for comparison-based sorting: log (n !) ≈ n log n - 1.44 n • Space requirement: Θ( n ) (NOT in-place) • Can be implemented without recursion (bottom-up)

  6. p 0 Quicksort • Select a pivot (partitioning element) • Partition the list into two halves • First half: Items less than the pivot • Second half: Items greater than the pivot • Exchange the pivot with the last element in the first half • Sort the two sublists A[i]≤p A[i]>p

  7. Efficiency of quicksort • Best case: split in the middleΘ( n log n) • Worst case: sorted array!Θ( n2) • Average case: random arraysΘ( n log n)

  8. Efficiency of quicksort • Improvements: • better pivot selection: median of three partitioning avoids worst case in sorted files • switch to insertion sort on small subfiles • elimination of recursion these combine to 20-25% improvement • Considered the method of choice for internal sorting for large files (n ≥ 10000)

  9. Efficiency of QuickHull algorithm • If points are not initially sorted by x-coordinate value, this can be accomplished in Θ( n log n) — no increase in asymptotic efficiency class • Other algorithms for convex hull: • Graham’s scan • DCHull also in Θ( n log n)

  10. Closest-Pair Problem: Divide and Conquer • Brute force approach requires comparing every point with every other point • Given n points, we must perform 1 + 2 + 3 + … + n-2 + n-1 comparisons. • Brute force  O(n2) • The Divide and Conquer algorithm yields  O(n log n) • Reminder: if n = 1,000,000 then • n2 = 1,000,000,000,000 whereas • n log n = 20,000,000

  11. Closest-Pair Algorithm Given: A set of points in 2-D

  12. 0 Closest-Pair Algorithm Step 1: Sort the points in one D

  13. 0 Closest-Pair Algorithm Lets sort based on the X-axis O(n log n) using quicksort or mergesort 4 9 13 6 2 14 11 7 3 10 5 1 8 12

  14. 0 Closest-Pair Algorithm Step 2: Split the points, i.e., Draw a line at the mid-point between 7 and 8 4 9 13 6 2 14 11 7 3 10 5 1 8 12 Sub-Problem 1 Sub-Problem 2

  15. 0 Closest-Pair Algorithm Advantage: Normally, we’d have to compare each of the 14 points with every other point. (n-1)n/2 = 13*14/2 = 91 comparisons 4 9 13 6 2 14 11 7 3 10 5 1 8 12 Sub-Problem 1 Sub-Problem 2

  16. 0 Closest-Pair Algorithm Advantage: Now, we have two sub-problems of half the size. Thus, we have to do 6*7/2 comparisons twice, which is 42 comparisons solution d = min(d1, d2) 4 9 13 d1 6 2 d2 14 11 7 3 10 5 1 8 12 Sub-Problem 1 Sub-Problem 2

  17. 0 Closest-Pair Algorithm Advantage: With just one split we cut the number of comparisons in half. Obviously, we gain an even greater advantage if we split the sub-problems. d = min(d1, d2) 4 9 13 d1 6 2 d2 14 11 7 3 10 5 1 8 12 Sub-Problem 1 Sub-Problem 2

  18. 0 Closest-Pair Algorithm Problem: However, what if the closest two points are each from different sub-problems? 4 9 13 d1 6 2 d2 14 11 7 3 10 5 1 8 12 Sub-Problem 1 Sub-Problem 2

  19. 0 Closest-Pair Algorithm Here is an example where we have to compare points from sub-problem 1 to the points in sub-problem 2. 4 13 d1 6 2 d2 9 14 11 7 3 10 8 5 1 12 Sub-Problem 1 Sub-Problem 2

  20. 0 Closest-Pair Algorithm However, we only have to compare points inside the following “strip.” d = min(d1, d2) 4 9 d d 13 d1 6 2 d2 14 11 7 3 10 5 1 8 12 Sub-Problem 1 Sub-Problem 2

  21. 0 Closest-Pair Algorithm Step 3: But, we can continue the advantage by splitting the sub-problems. 4 9 13 6 2 14 11 7 3 10 5 1 8 12

  22. 0 Closest-Pair Algorithm Step 3: In fact we can continue to split until each sub-problem is trivial, i.e., takes one comparison. 4 9 13 6 2 14 11 7 3 10 5 1 8 12

  23. 0 Closest-Pair Algorithm Finally: The solution to each sub-problem is combined until the final solution is obtained 4 9 13 6 2 14 11 7 3 10 5 1 8 12

  24. 0 Closest-Pair Algorithm Finally: On the last step the ‘strip’ will likely be very small. Thus, combining the two largest sub-problems won’t require much work. 4 9 13 6 2 14 11 7 3 10 5 1 8 12

  25. 0 Closest-Pair Algorithm • In this example, it takes 22 comparisons to find the closets-pair. • The brute force algorithm would have taken 91 comparisons. • But, the real advantage occurs when there are millions of points. 4 9 13 6 2 14 11 7 3 10 5 1 8 12

  26. 0 Closest-Pair Problem: Divide and Conquer • Here is another animation: • http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairApplet/ClosestPairApplet.html

More Related