1 / 27

DENSITAS

DENSITAS. PENGANTAR OSEANOGRAFI IV. Densitas dirumuskan : Sangat penting  akan mempengaruhi sirkulasi termohaline dan gerak vertikal perairan ( vertical mixing ) Densitas tidak bisa diukur langsung  ditentukan dari data suhu , salinitas dan tekanan. Lapisan permukaan dan gradien

soyala
Download Presentation

DENSITAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DENSITAS PENGANTAR OSEANOGRAFI IV

  2. Densitasdirumuskan: • Sangatpenting akanmempengaruhisirkulasitermohalinedangerakvertikalperairan (verticalmixing) • Densitastidakbisadiukurlangsung  ditentukandari data suhu, salinitasdantekanan

  3. Lapisanpermukaandangradien kecil (1,020 – 1,030 gr/cm3) • Densitasbertambahjika • Salintasmeningkat • Suhumenurun • Tekananmeningkat • Lapisandalam. ex: 0 = 1,028  5000 = 1,151 gr/cm3

  4. Lalu…. Bisakahsalinitastinggi Beradadiatas air salinitasrendah??

  5. Vertical profile

  6. Vertical) circulation driven by density  Thermohaline Circulation

  7. Kalkulasidensitas • Densitas air laut > 1000 kg/m3, tetapitidakpernah > 1100 kg/m3 (perubahanbersifatpuluhan kg/m3) • Untukkemudahkanpenulisan, densitasdinyatakandengan sigma () Densitas (sigma) Insitu (S,t,p) S,t,p = (S,t,p –1) x 103 Contoh : S,t,p= 1,02754 S,t,p= (1,02754 – 1) x 103 = 27,54

  8. sigma-nol (o) • o = (s,0,0 - 1) x 103 • o Hanyadidapatdarinilaisalintasmelalui Sigma t (t) • t = (s,t,0 – 1) x 103 • Hubungan tdano adalah : t = o –D Dimana: D  faktorkoreksi(diberikandalamTables of Seawater Density ) • o = 0,069 + 1,4708 S –0,001570 S2 + 0,0000348 S3

  9. Untukmenghitung , FofonofdanTabata (1958) membuatpersamaan • Dimana T adalahsuhu A0 = 67,26 A10 = 1,0 A20 = 0 A1 = 4,53168 A11 = - 4,7867 E-3 A21 = 1,8030 E-5 A2 = -0,5459 A12 = 9,8185 E-5 A22 = - 8,164 E-7 A3 = -1,9825E-3 A13 = -1,0843 E-6 A23 = 1,667 E-8 A4 = - 1,438E-7

  10. Ekman (1908) menghitungpengaruhtek (p) padaberbagai t dan s s,t,p, sehinggat dapatdikoreksis,t,p ( densitasinsitu). • Bjerkness and Sandstron (1910) membuattabel: t,s,psampai 10.000db. • Hesselberg and Svendrupmenyederhanakantabel t,s,plebihmudahdihitungdarit

  11. Water Masses Oceanic Surface Current

  12. The Approximate boundaries of the main upper water masses in the ocean

  13. T-S Diagrams t • Karenaadanyaperbedaan T-S padasetiapmassamassaperairan identifikasimassaair

  14. Depth (pressure), Salinity and Temperature • Tekananditentukandaripershidrostatik P = -gz P = gr/cm3.cm/det2.cm = gr cm/det2.1/cm2 = dyne/cm2 = 1/105dbar • 1 dbar = 1/10 bar = 105dyne/cm2 CONSOL • Berapatekanan air padakedalaman 1 m??

  15. P = -gz  = 1,035 gr/cm3 g = 980 cm/det2 z = -100 cm P = - (1,035 gr/cm3 ) x 980 cm/det2 x (-100 cm) = 101430 gr cm/cm2 det2 = 101430 dyne/cm2. = 1,01430 dbar 1 dbar • 1000 meter tekanan air  1000 dbar.

  16. Effect of Pressure

  17. Mixing Processes in The Ocean Laminar Flow Turbulent Flow

  18. Horizontal mixing >> vertical mixing Density < Density > Density > Density < More stable more energy

  19. Water base on stability Warm/ Less Salty Cool/ Salty Warm/ Salty Cool/ Less Salty Cool/ Salty Warm/ Less Salty Cool/ Less Salty Warm/ Salty Instable Difusion Convection Instable Salt Finger Always Stable Always Instable E = 0  Neutral E < 0  Instable E > 0  Stable

  20. Salt Finger Process Effect only a few cm

  21. Internal Wave

  22. Effect of internal wave

  23. Front

  24. Eddies

  25. TAMAT UNTUK EPISODE KALI INI

More Related