1 / 34

Lecture 5: Pointer

Lecture 5: Pointer. Outline Chapter 5 Pointer continue Call by reference Pointer arithmatic Debugging your code Funtion pointer. 5.3 Pointer Operators. * (indirection/dereferencing operator) Returns synonym for object its pointer operand points to

spiro
Download Presentation

Lecture 5: Pointer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 5: Pointer Outline • Chapter 5 • Pointer continue • Call by reference • Pointer arithmatic • Debugging your code • Funtion pointer

  2. 5.3 Pointer Operators • * (indirection/dereferencing operator) • Returns synonym for object its pointer operand points to • *yPtr returns y (because yPtr points to y). • dereferenced pointer is lvalue *yptr = 9; // assigns 9 to y • * and & are inverses of each other

  3. 1 // Fig. 5.4: fig05_04.cpp 2 // Using the & and * operators. 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 int main() 9 { 10 int a; // a is an integer 11 int *aPtr; // aPtr is a pointer to an integer 12 13 a = 7; 14 aPtr = &a; // aPtr assigned address of a 15 16 cout << "The address of a is " << &a 17 << "\nThe value of aPtr is " << aPtr; 18 19 cout << "\n\nThe value of a is " << a 20 << "\nThe value of *aPtr is " << *aPtr; 21 22 cout << "\n\nShowing that * and & are inverses of " 23 << "each other.\n&*aPtr = " << &*aPtr 24 << "\n*&aPtr = " << *&aPtr << endl; 25 * and & are inverses of each other fig05_04.cpp(1 of 2)

  4. 26 return0; // indicates successful termination 27 28 } // end main * and & are inverses; same result when both applied to aPtr fig05_04.cpp(2 of 2)fig05_04.cppoutput (1 of 1) The address of a is 0012FED4 The value of aPtr is 0012FED4 The value of a is 7 The value of *aPtr is 7 Showing that * and & are inverses of each other. &*aPtr = 0012FED4 *&aPtr = 0012FED4

  5. 5.4 Calling Functions by Reference • 3 ways to pass arguments to function • Pass-by-value • Pass-by-reference with reference arguments • Pass-by-reference with pointer arguments • return can return one value from function • Arguments passed to function using reference arguments • Modify original values of arguments • More than one value “returned”

  6. 5.4 Calling Functions by Reference • Pass-by-reference with pointer arguments • Simulate pass-by-reference • Use pointers and indirection operator • Pass address of argument using & operator • Arrays not passed with & because array name already pointer • * operator used as alias/nickname for variable inside of function

  7. 1 // Fig. 5.6: fig05_06.cpp 2 // Cube a variable using pass-by-value. 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 int cubeByValue( int ); // prototype 9 10 int main() 11 { 12 int number = 5; 13 14 cout << "The original value of number is " << number; 15 16 // pass number by value to cubeByValue 17 number = cubeByValue( number ); 18 19 cout << "\nThe new value of number is " << number << endl; 20 21 return0; // indicates successful termination 22 23 } // end main 24 Pass number by value; result returned by cubeByValue fig05_06.cpp(1 of 2)

  8. 25 // calculate and return cube of integer argument 26 int cubeByValue( int n ) 27 { 28 return n * n * n; // cube local variable n and return result 29 30 } // end function cubeByValue Cubes and returns local variable n cubeByValue receives parameter passed-by-value fig05_06.cpp(2 of 2)fig05_06.cppoutput (1 of 1) The original value of number is 5 The new value of number is 125

  9. 1 // Fig. 5.7: fig05_07.cpp 2 // Cube a variable using pass-by-reference 3 // with a pointer argument. 4 #include <iostream> 5 6 using std::cout; 7 using std::endl; 8 9 void cubeByReference( int * ); // prototype 10 11 int main() 12 { 13 int number = 5; 14 15 cout << "The original value of number is " << number; 16 17 // pass address of number to cubeByReference 18 cubeByReference( &number ); 19 20 cout << "\nThe new value of number is " << number << endl; 21 22 return0; // indicates successful termination 23 24 } // end main 25 Prototype indicates parameter is pointer to int Apply address operator & to pass address of number to cubeByReference cubeByReference modified variable number fig05_07.cpp(1 of 2)

  10. 26 // calculate cube of *nPtr; modifies variable number in main 27 void cubeByReference( int *nPtr ) 28 { 29 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr 30 31 } // end function cubeByReference cubeByReference receives address of int variable, i.e., pointer to an int Modify and access int variable using indirection operator * fig05_07.cpp(2 of 2)fig05_07.cppoutput (1 of 1) The original value of number is 5 The new value of number is 125

  11. 5.6 Bubble Sort Using Pass-by-Reference • Implement bubbleSort using pointers • Want function swap to access array elements • Individual array elements: scalars • Passed by value by default • Pass by reference using address operator &

  12. 1 // Fig. 5.15: fig05_15.cpp 2 // This program puts values into an array, sorts the values into 3 // ascending order, and prints the resulting array. 4 #include <iostream> 5 6 using std::cout; 7 using std::endl; 8 9 #include <iomanip> 10 11 using std::setw; 12 13 void bubbleSort( int *, constint ); // prototype 14 void swap( int * const, int * const ); // prototype 15 16 int main() 17 { 18 const intarraySize = 10; 19 int a[ arraySize ] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 }; 20 21 cout << "Data items in original order\n"; 22 23 for ( int i = 0; i < arraySize; i++ ) 24 cout << setw( 4 ) << a[ i ]; 25 fig05_15.cpp(1 of 3)

  13. 26 bubbleSort( a, arraySize ); // sort the array 27 28 cout << "\nData items in ascending order\n"; 29 30 for ( int j = 0; j < arraySize; j++ ) 31 cout << setw( 4 ) << a[ j ]; 32 33 cout << endl; 34 35 return0; // indicates successful termination 36 37 } // end main 38 39 // sort an array of integers using bubble sort algorithm 40 void bubbleSort( int *array, const int size ) 41 { 42 // loop to control passes 43 for ( int pass = 0; pass < size - 1; pass++ ) 44 45 // loop to control comparisons during each pass 46 for ( int k = 0; k < size - 1; k++ ) 47 48 // swap adjacent elements if they are out of order 49 if ( array[ k ] > array[ k + 1 ] ) 50 swap( &array[ k ], &array[ k + 1 ] ); Receives size of array as argument; declared const to ensure size not modified. Declare as int *array (rather than int array[]) to indicate function bubbleSort receives single-subscripted array. fig05_15.cpp(2 of 3)

  14. 51 52 } // end function bubbleSort 53 54 // swap values at memory locations to which 55 // element1Ptr and element2Ptr point 56 void swap( int * const element1Ptr, int * const element2Ptr ) 57 { 58 int hold = *element1Ptr; 59 *element1Ptr = *element2Ptr; 60 *element2Ptr = hold; 61 62 } // end function swap Pass arguments by reference, allowing function to swap values at memory locations. fig05_15.cpp(3 of 3)fig05_15.cppoutput (1 of 1) Data items in original order 2 6 4 8 10 12 89 68 45 37 Data items in ascending order 2 4 6 8 10 12 37 45 68 89

  15. 5.6 Bubble Sort Using Pass-by-Reference • sizeof • Unary operator returns size of operand in bytes • For arrays, sizeof returns ( size of 1 element ) * ( number of elements ) • If sizeof( int ) = 4, then int myArray[10]; cout << sizeof(myArray); will print 40 • sizeof can be used with • Variable names • Type names • Constant values

  16. 1 // Fig. 5.17: fig05_17.cpp 2 // Demonstrating the sizeof operator. 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 int main() 9 { 10 char c; 11 short s; 12 int i; 13 long l; 14 float f; 15 double d; 16 longdouble ld; 17 int array[ 20 ]; 18 int *ptr = array; 19 fig05_17.cpp(1 of 2)

  17. 20 cout << "sizeof c = " << sizeof c 21 << "\tsizeof(char) = " << sizeof( char ) 22 << "\nsizeof s = " << sizeof s 23 << "\tsizeof(short) = " << sizeof( short ) 24 << "\nsizeof i = " << sizeof i 25 << "\tsizeof(int) = " << sizeof( int ) 26 << "\nsizeof l = " << sizeof l 27 << "\tsizeof(long) = " << sizeof( long ) 28 << "\nsizeof f = " << sizeof f 29 << "\tsizeof(float) = " << sizeof( float ) 30 << "\nsizeof d = " << sizeof d 31 << "\tsizeof(double) = " << sizeof( double ) 32 << "\nsizeof ld = " << sizeof ld 33 << "\tsizeof(long double) = " << sizeof( long double ) 34 << "\nsizeof array = " << sizeof array 35 << "\nsizeof ptr = " << sizeof ptr 36 << endl; 37 38 return0; // indicates successful termination 39 40 } // end main Operator sizeof can be used on variable name. Operator sizeof can be used on type name. fig05_17.cpp(2 of 2)

  18. sizeof c = 1 sizeof(char) = 1 sizeof s = 2 sizeof(short) = 2 sizeof i = 4 sizeof(int) = 4 sizeof l = 4 sizeof(long) = 4 sizeof f = 4 sizeof(float) = 4 sizeof d = 8 sizeof(double) = 8 sizeof ld = 8 sizeof(long double) = 8 sizeof array = 80 sizeof ptr = 4 fig05_17.cppoutput (1 of 1)

  19. location 3000 3004 3008 3012 3016 pointer variable vPtr v[0] v[1] v[2] v[4] v[3] 5.7 Pointer Expressions and Pointer Arithmetic • Pointer arithmetic • Increment/decrement pointer (++ or --) • Add/subtract an integer to/from a pointer( + or += , - or -=) • Pointers may be subtracted from each other • Pointer arithmetic meaningless unless performed on pointer to array • 5 element int array on a machine using 4 byte ints • vPtr points to first element v[ 0 ], which is at location 3000 vPtr = 3000 • vPtr += 2; sets vPtr to 3008 vPtr points to v[ 2 ]

  20. 5.7 Pointer Expressions and Pointer Arithmetic • Subtracting pointers • Returns number of elements between two addresses vPtr2 = &v[ 2 ];vPtr = &v[ 0 ];vPtr2 - vPtr == 2 • Pointer assignment • Pointer can be assigned to another pointer if both of same type • If not same type, cast operator must be used • Exception: pointer to void (type void *) • Generic pointer, represents any type • No casting needed to convert pointer to void pointer • void pointers cannot be dereferenced

  21. 5.7 Pointer Expressions and Pointer Arithmetic • Pointer comparison • Use equality and relational operators • Comparisons meaningless unless pointers point to members of same array • Compare addresses stored in pointers • Example: could show that one pointer points to higher numbered element of array than other pointer • Common use to determine whether pointer is 0 (does not point to anything)

  22. 5.8 Relationship Between Pointers and Arrays • Arrays and pointers closely related • Array name like constant pointer • Pointers can do array subscripting operations • Accessing array elements with pointers • Element b[ n ] can be accessed by *( bPtr + n ) • Called pointer/offset notation • Addresses • &b[ 3 ] same as bPtr + 3 • Array name can be treated as pointer • b[ 3 ] same as *( b + 3 ) • Pointers can be subscripted (pointer/subscript notation) • bPtr[ 3 ] same as b[ 3 ]

  23. 1 // Fig. 5.20: fig05_20.cpp 2 // Using subscripting and pointer notations with arrays. 3 4 #include <iostream> 5 6 using std::cout; 7 using std::endl; 8 9 int main() 10 { 11 int b[] = { 10, 20, 30, 40 }; 12 int *bPtr = b; // set bPtr to point to array b 13 14 // output array b using array subscript notation 15 cout << "Array b printed with:\n" 16 << "Array subscript notation\n"; 17 18 for ( int i = 0; i < 4; i++ ) 19 cout << "b[" << i << "] = " << b[ i ] << '\n'; 20 21 // output array b using the array name and 22 // pointer/offset notation 23 cout << "\nPointer/offset notation where " 24 << "the pointer is the array name\n"; 25 Using array subscript notation. fig05_20.cpp(1 of 2)

  24. 26 for ( int offset1 = 0; offset1 < 4; offset1++ ) 27 cout << "*(b + " << offset1 << ") = " 28 << *( b + offset1 ) << '\n'; 29 30 // output array b using bPtr and array subscript notation 31 cout << "\nPointer subscript notation\n"; 32 33 for ( int j = 0; j < 4; j++ ) 34 cout << "bPtr[" << j << "] = " << bPtr[ j ] << '\n'; 35 36 cout << "\nPointer/offset notation\n"; 37 38 // output array b using bPtr and pointer/offset notation 39 for ( int offset2 = 0; offset2 < 4; offset2++ ) 40 cout << "*(bPtr + " << offset2 << ") = " 41 << *( bPtr + offset2 ) << '\n'; 42 43 return0; // indicates successful termination 44 45 } // end main Using array name and pointer/offset notation. Using pointer subscript notation. Using bPtr and pointer/offset notation. fig05_20.cpp(2 of 2)

  25. Gdb illustration for the pointer example • debug option –g • g++ -g Fig05_20.cc –o Fig05_20 • Debugging commands • Starting a debugging session • gdb Fig05_20 • Specify a breaking point at main() • b main • Execute the program: r • Step execution: s • Continue execution: c • Show the variables: p • Show codes: l • Help: h

  26. 1 // Fig. 5.21: fig05_21.cpp 2 // Copying a string using array notation 3 // and pointer notation. 4 #include <iostream> 5 6 using std::cout; 7 using std::endl; 8 9 void copy1( char *, const char * ); // prototype 10 void copy2( char *, const char * ); // prototype 11 12 int main() 13 { 14 char string1[ 10 ]; 15 char *string2 = "Hello"; 16 char string3[ 10 ]; 17 char string4[] = "Good Bye"; 18 19 copy1( string1, string2 ); 20 cout << "string1 = " << string1 << endl; 21 22 copy2( string3, string4 ); 23 cout << "string3 = " << string3 << endl; 24 25 return0; // indicates successful termination fig05_21.cpp(1 of 2)

  27. 26 27 } // end main 28 29 // copy s2 to s1 using array notation 30 void copy1( char *s1, const char *s2 ) 31 { 32 for ( int i = 0; ( s1[ i ] = s2[ i ] ) != '\0'; i++ ) 33 ; // do nothing in body 34 35 } // end function copy1 36 37 // copy s2 to s1 using pointer notation 38 void copy2( char *s1, constchar *s2 ) 39 { 40 for ( ; ( *s1 = *s2 ) != '\0'; s1++, s2++ ) 41 ; // do nothing in body 42 43 } // end function copy2 Use array subscript notation to copy string in s2 to character array s1. Use pointer notation to copy string in s2 to character array in s1. Increment both pointers to point to next elements in corresponding arrays. fig05_21.cpp(2 of 2)fig05_21.cppoutput (1 of 1) string1 = Hello string3 = Good Bye

  28. ’\0’ ’\0’ ’\0’ ’\0’ ’n’ ’d’ ’o’ ’u’ ’a’ ’s’ ’d’ ’b’ ’m’ ’H’ ’s’ ’a’ ’D’ ’i’ ’a’ ’s’ ’l’ ’C’ ’r’ ’s’ ’S’ ’p’ ’e’ ’t’ ’e’ suit[0] suit[1] suit[2] suit[3] 5.9 Arrays of Pointers • Arrays can contain pointers • Commonly used to store array of strings char *suit[ 4 ] = {"Hearts", "Diamonds","Clubs", "Spades" }; • Each element of suit points to char * (a string) • Array does not store strings, only pointers to strings • suit array has fixed size, but strings can be of any size

  29. 5.11 Function Pointers • Pointers to functions • Contain address of function • Similar to how array name is address of first element • Function name is starting address of code that defines function • Function pointers can be • Passed to functions • Returned from functions • Stored in arrays • Assigned to other function pointers

  30. 5.11 Function Pointers • Calling functions using pointers • Assume parameter: • bool ( *compare ) ( int, int ) • Execute function with either • ( *compare ) ( int1, int2 ) • Dereference pointer to function to execute OR • compare( int1, int2 ) • Could be confusing • User may think compare name of actual function in program

  31. 5.11 Function Pointers • Arrays of pointers to functions • Menu-driven systems • Pointers to each function stored in array of pointers to functions • All functions must have same return type and same parameter types • Menu choice  subscript into array of function pointers

  32. 1 // Fig. 5.26: fig05_26.cpp 2 // Demonstrating an array of pointers to functions. 3 #include <iostream> 4 5 using std::cout; 6 using std::cin; 7 using std::endl; 8 9 // function prototypes 10 void function1( int ); 11 void function2( int ); 12 void function3( int ); 13 14 int main() 15 { 16 // initialize array of 3 pointers to functions that each 17 // take an int argument and return void 18 void (*f[ 3 ])( int ) = { function1, function2, function3 }; 19 20 int choice; 21 22 cout << "Enter a number between 0 and 2, 3 to end: "; 23 cin >> choice; 24 Array initialized with names of three functions; function names are pointers. fig05_26.cpp(1 of 3)

  33. 25 // process user's choice 26 while ( choice >= 0 && choice < 3 ) { 27 28 // invoke function at location choice in array f 29 // and pass choice as an argument 30 (*f[ choice ])( choice ); 31 32 cout << "Enter a number between 0 and 2, 3 to end: "; 33 cin >> choice; 34 } 35 36 cout << "Program execution completed." << endl; 37 38 return0; // indicates successful termination 39 40 } // end main 41 42 void function1( int a ) 43 { 44 cout << "You entered " << a 45 << " so function1 was called\n\n"; 46 47 } // end function1 48 Call chosen function by dereferencing corresponding element in array. fig05_26.cpp(2 of 3)

  34. 49 void function2( int b ) 50 { 51 cout << "You entered " << b 52 << " so function2 was called\n\n"; 53 54 } // end function2 55 56 void function3( int c ) 57 { 58 cout << "You entered " << c 59 << " so function3 was called\n\n"; 60 61 } // end function3 fig05_26.cpp(3 of 3)fig05_26.cppoutput (1 of 1) Enter a number between 0 and 2, 3 to end: 0 You entered 0 so function1 was called Enter a number between 0 and 2, 3 to end: 1 You entered 1 so function2 was called Enter a number between 0 and 2, 3 to end: 2 You entered 2 so function3 was called Enter a number between 0 and 2, 3 to end: 3 Program execution completed.

More Related