1 / 25

GENETICS

Learn about Gregor Mendel, the Father of Genetics, and how he used pea plants to establish the basic laws of heredity. Explore the principles of Punnett squares and make predictions about genetic outcomes. Understand mono- and dihybrid crosses with practical applications in determining genotypes.

sstewart
Download Presentation

GENETICS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. T T Tt t t GENETICS SINGLE TRAIT PUNNETT SQUARE ¼

  2. STUDENT EXPECTATION • 7-2.6 STUDENTS WILL MAKE PREDICTIONS ABOUT POSSIBLE OUTCOMES OF VARIOUS GENETIC COMBINATIONS OF INHERITED CHARACTERISTICS T t TT Tt T T

  3. HIGHLIGHT OF OBJECTIVE 2 • SINGLE-TRAIT PUNNETT SQUARES MAY BE USED, AND STUDENTS WILL BE EXPECTED TO PREDICT GENETIC OUTCOMES. ¾ 75% 3:1

  4. Gregor Mendel • The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid the foundation to the study of heredity, Mendel is referred to as “The Father of Genetics.”

  5. Mendel’ Pea Plants Mendel based his laws on his studies of garden pea plants. Mendel was able to observe differences in multiple traits over many generations because pea plants reproduce rapidly, and have many visible traits such as: Pod color Seed Color Plant Height Green Yellow Green Yellow Seed Shape Short Pod Shape Tall Wrinkled Round Smooth Pinched

  6. Mendel’s Experiments Mendel noticed that some plants always produced offspring that had a form of a trait exactly like the parent plant. He called these plants “purebred” plants. For instance, purebred short plants always produced short offspring and purebred tall plants always produced tall offspring. X Short Offspring Purebred Short Parents X Purebred Tall Parents Tall Offspring

  7. Mendel’s First Experiment Mendel crossed purebred plants with opposite forms of a trait. He called these plants the parental generation , or P generation. For instance, purebred tall plants were crossed with purebred short plants. X Parent ShortP generation Parent TallP generation Offspring TallF1 generation Mendel observed that all of the offspring grew to be tall plants. None resembled the short short parent. He called this generation of offspring the first filial , or F1 generation, (The word filial means “son” in Latin.)

  8. Mendel’s Second Experiment Mendel then crossed two of the offspring tall plants produced from his first experiment. Parent Plants Offspring X TallF1 generation 3⁄4 Tall & 1⁄4 ShortF2 generation Mendel called this second generation of plants the second filial, F2, generation. To his surprise, Mendel observed that this generation had a mix of tall and short plants. This occurred even though none of the F1 parents were short.

  9. TOOLS TO KNOW PARENT’SGENES A PUNNET SQUARE IS A TOOL USED TO PREDICT THE POSSIBLE GENOTYPES FOR THE OFFSPRING OF TWO KNOWN PARENTS. PARENT’S GENES

  10. TERMS TO KNOW

  11. TERMS TO KNOW

  12. TERMS TO KNOW

  13. HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE THE PARENTS’ ALLELES GO ON THE OUTSIDE OF THE SQUARE B B BB X bb b b

  14. HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE THE PARENTS’ ALLELES GO ON THE OUTSIDE OF THE SQUARE DROP THE LETTERS ON THE TOP, INTO EACH SQUARE B B b B b B b MOVE EACH LETTER ON THE SIDE, INTO EACH SQUARE b THE ORDER DOES NOT MATTER IN THE BOXES, BUT UPPERCASE FIRST IS A GOOD RULE B b B b

  15. HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE WHAT DO THE RESULTS SHOW? RESULTS: B B PHENOTYPIC: 100% BLACK 4:0 RATIO, BLACK TO BROWN IF B IS THE DOMINANT ALLELE FOR BLACK b Bb Bb AND b IS THE RECESSIVE ALLELE FOR BROWN GENOTYPIC: 100% Bb 4:0 ALL Bb b Bb Bb THEN WE CAN MAKE PREDICTIONS ABOUT THE OUTCOMES

  16. HOW TO USE A PUNNETT SQUARE WHAT ARE THE RESULTS? LET’S LOOK AT ANOTHER PUNNETT SQUARE AND PREDICT THE OUTCOME T t PHENOTYPIC: 75% TALL 25% SHORT 3 TO 1 RATIO: TALL TO SHORT T T T T t T IS THE DOMINANT ALLELE FOR TALLNESS GENOTYPIC: 1TT: 2Tt: 1tt 1:2:1 RATIO 25 %TT, 50% Tt, 25% tt t T t t t t IS THE RECESSIVE ALLELE FOR SHORTNESS

  17. PRACTICAL APPLICATION OF PUNNETT SQUARES THE ALLELES OF A PARTICULAR SPECIES OF DOG CAN BE EITHER D (NORMAL HEIGHTH) OR d (DWARF). THE HETEROZYGOUS (Dd) AND HOMOZYGOUS DOMINANT (DD) FORM OF THIS DOG LOOK THE SAME (TALL). IF YOU FOUND A STRAY DOG OF THIS BREED, HOW COULD YOU DETERMINE ITS GENOTYPE?

  18. PRACTICAL APPLICATION OF PUNNETT SQUARES COULD A DOG BE CROSSED WITH ANOTHER DOG TO DETERMINE IF HE WAS PUREBRED FOR TALLNESS? WHAT GENOTYPE SHOULD THE DOG HAVE THAT IS BEING USED FOR THE CROSS?

  19. PRACTICAL APPLICATION OF PUNNETT SQUARES D D IF THE DOG IS PUREBRED (DD), IT DOESN’T MATTER WHAT YOU CROSS IT WITH, THE OFFSPRING WILL ALWAYS LOOK LIKE THE DOMINANT. DD DD D D DD DD D D D D D DD DD d Dd Dd d Dd Dd d Dd Dd

  20. PRACTICAL APPLICATION OF PUNNETT SQUARES WHAT WOULD BE THE MOST EFFECTIVE CROSS FOR DETERMINING IF THE DOG IS HETEROZYGOUS (Dd) ? CROSSING IT WITH A PUREBRED (DD) WILL NOT HELP. WHAT WOULD THE RESULTS BE IF YOU CROSSED IT WITH ANOTHER HETEROZYGOUS? WHAT WOULD THE RESULTS BE IF YOU CROSSED IT WITH A HOMOZYGOUS RECESSIVE (dd)? d D d D D d DD Dd Dd dd d d dd Dd dd Dd

  21. PRACTICAL APPLICATION OF PUNNETT SQUARES d D D d D DD Dd d Dd dd d d Dd dd dd Dd THE HETEROZYGOUS CROSS WOULD ONLY GIVE YOU A 25% CHANCE OF THE RECESSIVE TRAIT APPEARING. THE MOST EFFECTIVE CROSS WAS USING THE HOMOZYGOUS RECESSIVE. THIS WOULD GIVE A 50% CHANCE OF THE RECESSIVE TRAIT APPEARING. THIS PROCESS IS CALLED A TEST CROSS. IN A LITTER OF DOGS, IF A RECESSIVE DOG APPEARS, THEN YOU KNOW THAT THE ORIGINAL DOG WAS NOT A PUREBRED.

  22. TAKS FORMATTED ITEMS IN DROSOPHILA MELANOGASTER (FRUIT FLIES), RED EYE COLOR (R) IS DOMINANT OVER BROWN EYE COLOR (r). IF THE FLIES IN THE PICTURE WERE CROSSED, WHAT PERCENT OF THEIR OFFSPRING WOULD BE EXPECTED TO HAVE BROWN EYES? ANSWER: 50%

  23. TAKS FORMATTED ITEMS H h • WHICH OF THE FOLLOWING HAS THE hh GENOTYPE? • 1 & 3 • 2 • 4 • NONE H 1 4 3 h 2 • 2. WHICH OF THE FOLLOWING IS A TRUE STATEMENT? • INDIVIDUAL 4 IS RECESSIVE • INDIVIDUALS 1 & 3 ARE HETEROZYGOUS • INDIVIDUAL 2 IS DOMINANT • ALL INDIVIDUALS ARE FEMALE

  24. TAKS FORMATTED ITEMS B b • 3. IF B IS THE ALLELE FOR BLACK FUR AND b IS THE ALLELE FOR WHITE FUR, WHAT PERCENT WOULD BE BLACK? • 25% • 50% • 100% • 75% B Bb BB Bb b bb • 4. WHAT FRACTION IS HOMOZYGOUS DOMINANT IN THE ABOVE CROSS? • 1/2 • 1/4 • 1/3 • 3/4

  25. TAKS FORMATTED ITEMS B B • 5. IN THIS CROSS, WHAT IS THE RATIO OF BB TO Bb? • 3 : 1 • 4 : 1 • 2 : 2 • 0 : 4 B BB BB Bb b Bb

More Related