1 / 20

Utility Driven Adaptive Workflow Execution

Utility Driven Adaptive Workflow Execution. Kevin Lee School of Computer Science, University of Manchester Currently at University of Mannheim, Germany L ee@bwl.uni-mannheim.de www.kevin-lee.co.uk/research.html. 20 th May 2009. 1. Problem Overview.

stacia
Download Presentation

Utility Driven Adaptive Workflow Execution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Utility Driven Adaptive Workflow Execution Kevin Lee School of Computer Science, University of Manchester Currently at University of Mannheim, Germany Lee@bwl.uni-mannheim.de www.kevin-lee.co.uk/research.html 20th May 2009

  2. 1. Problem Overview • Concerning: Scientific Workflows executing on Grids • Characteristics: • Very long running • Small delays can have large effects due to dependencies • involve highly distributed resources • Limited control over resources • Uncertain execution and batch queue times • Statically schedule a workflow before it starts executing: • Using current information about the execution environment • What happens if the environment changes? • Resources appear/disappear • Loads change due to resources being used • Obvious solution, Adapt at runtime!!!

  3. 2. Background: montage workflow • Montage • Deliver science-grade mosaics on demand • Produce mosaics from a wide range of data sources • User-specified parameters of projection, coordinates, size, rotation and spatial sampling Mosaic created by Montage from a run of the M101 galaxy images <- A Simple Montage workflow. Can execute on Grid resources. Can be specified in a high level abstract form: Logical files Logical transformations

  4. 2. Background Pegasus Workflow execution: Compilation Abstract (logical) ->Concrete Submission Graph dependency manager Execution Jobs execute on grid resources Reporting Task and workflow status

  5. 3. Adaptive Workflow Execution Retrofit an Adaptivity framework to Pegasus Minimal changes to Pegasus Touch points via Sensors and Effectors

  6. 3. Adaptive Workflow Execution Aim • When grid site has contention • Batch queues times is higher than estimated • When a grid site is under utilised • Batch queues times is lower than estimated • Static Schedule may be initially correct • This diverges from the ideal with time. • Adapt to changing batch queue times

  7. 3. Adaptive Workflow Execution Sensors->Monitoring To monitor the progress of an executing workflow, we parse the Live Log. Example: 2/17 11:53:14 Event: ULOG_GRID_SUBMIT for Condor Node mBackground_ID000023 (4713.0) 2/17 11:53:14 Event: ULOG_EXECUTE for Condor Node mBackground_ID000021 (4709.0) 2/17 11:53:14 Number of idle job procs: 4 2/17 11:53:20 Event: ULOG_EXECUTE for Condor Node mBackground_ID000019 (4708.0) 2/17 11:53:20 Number of idle job procs: 3 2/17 11:53:28 Event: ULOG_JOB_TERMINATED for Condor Node mBackground_ID000022 (4710.0) 2/17 11:53:28 Node mBackground_ID000022 job proc (4710.0) completed successfully. RegEx: ([\d]+)/([\d]+).([\d]+):([\d]+):([\d]+).Event:.([\S]+_[\S]+).for.Condor.Node.([a-zA-Z0-9_]+) Result: XML Events for job queued, executed, termination. Made available to analysis as a stream

  8. 3. Adaptive Workflow Execution Analysis Uses the CQL continuous query language to group and analyse the events SQL-like but with extensions for queries over time. Calculates current average job queue times over a period of time Causes re-planning when queue times are more or less than expected <vquery> <cqlvquery>select h*3600+m*60+s,job,site,est from workflowlog where event="ULOG_SUBMIT";</cqlvquery> <cqlvtable>register stream submittedjobs (time int, job char(22), site char(22), est int);</cqlvtable> </vquery> <vquery> <cqlvquery>select h*3600+m*60+s,job from workflowlog where event="ULOG_EXECUTE";</cqlvquery> <cqlvtable>register stream executedjobs (time int, job char(22));</cqlvtable> </vquery> <vquery> <cqlvquery>Rstream (select executed.time-submitted.time, executed.job, submitted.site, submitted.est from executedjobs[Range 360 Seconds] as executed,submittedjobs as submitted where executed.job=submitted.job); </cqlvquery> <cqlvtable>register stream jobdelay (delay int, job char(22), site char(22), est int);</cqlvtable> </vquery> <cqlquery>select site, delay, est, (delay-est) from jobdelay where (delay-est)>20;</cqlquery> Output from this causes planning

  9. 3. Adaptive Workflow Execution Planning Planning has the task of recalculating a better assignment for the workflow Data we have: Workflow DAG Current Assignment Collected data about resources, number CPUS, Execution times, AVG queue time What we’ve submitted since the execution started. Approach: Call out to a Matlab based utility function optimiser (MADS) Each iteration: New potential assignment We provide a function that evaluates the new potential assignment. Proceed with the search until the best assignment is found

  10. 3. Adaptive Workflow Execution Planning Firstly, for each proposed new assignment we calculate estimated queue times: Estimated Queue time: Based on external demand, the new demand and the change in actual queue times A Estimate of External Demand For a period p Assigned demand For the period p The Candidate Demand The demand we’ll put on the resources Full explanation in papers

  11. 3. Adaptive Workflow Execution Planning Next, calculate the Predicted Response Time for the workflow: Completion time of the last task plus any adaptation cost: Recursive formula to estimate the completion time of the last task So, now we have a estimate of how long a workflow will take for each new assignment We need a way of judging how good a assignment is in relation to its PRT and the resources used

  12. 3. Adaptive Workflow Execution Planning Option 1: Utility for Response time: Purely tries to use the fastest resources available to complete the workflow EQT ensures a resource isn’t overloaded The utility is therefore just: The higher the Utility value the better The optimiser will try multiple values of assignment until a ‘good’ one is found

  13. 3. Adaptive Workflow Execution Planning Option 2: Utility for Profit: As resources are not free, we attach a value to using resources We have a reward for completing a workflow within a target time A cost for using a resource to execute a task Profit is a measure of utility minus cost Cost for a workflow assignment: The utility is a calculation of how likely the assignment completes before the target response time The larger the ‘profit’ the better for the optimiser

  14. 3. Adaptive Workflow Execution Execution/Deploying a new assignment For a new assignment: Tell the local DAG manager to halt the workflow(s) Collect the locations of all the partial results Modify local databases with this new data Replan the workflow(s) with the new assignment Deploy the workflow Continue monitoring the new execution Repeats every time a new assignment is available

  15. 4. Experimental Evaluation Workflow: 27 Node Montage workflow of M17: Takes between 20 mins and a few hours depending on resources Profit gain is 100 for completing within the target Resources: Two Clusters. Linux, Sun Grid Engine, WSGRAM, Globus. (1) is less powerful with longer queue times (2) is more powerful with shorter queue times (2) costs more than (1). (1) costs 1, (2) costs 2.

  16. 4. Experimental Evaluation Experiment 1 Single workflow. Periodic Load Applied to Cluster 1. Utility based on response time The adaptive version performs an adaption and results in a faster workflow

  17. 4. Experimental Evaluation Experiment 2: Same as experiment 1 but for different target response times U(RT) Always performs the best. U(Profit) meets the High and mid target response times at less cost than U(RT) U(Profit) fails to meet the low target response time so uses the cheapest resources

  18. 4. Experimental Evaluation Experiment 3 Two Montage workflows. Periodic Load Applied to Cluster 1. Achieved by submitting and monitoring two workflows at the same time. Utility is the Sum of all U(RT) and U(Profit) for all workflows. U(RT) Always performs the best. U(Profit) meets the Loose and mid target response times at less cost than U(RT) U(Profit) fails to meet the Tight target response time so uses the cheapest resources

  19. 5. Conclusions • An Approach to optimising workflow execution: • Long running workflows • Takes into account a workflows structure • Takes into account current loads • Takes into account the loads we will apply • Minimal intervention to workflow infrastructure • Good results for Response time and Profit focus

  20. Questions?

More Related