1 / 59

Logic synthesis from concurrent specifications

Logic synthesis from concurrent specifications. Jordi Cortadella Universitat Politecnica de Catalunya Barcelona, Spain. In collaboration with M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev. Outline. Overview of the synthesis flow Specification

starbuck
Download Presentation

Logic synthesis from concurrent specifications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logic synthesis from concurrent specifications Jordi Cortadella Universitat Politecnica de CatalunyaBarcelona, Spain In collaboration with M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev

  2. Outline • Overview of the synthesis flow • Specification • State graph and next-state functions • State encoding • Implementability conditions • Speed-independent circuit • Complex gates • C-element architecture • Review of some advanced topics

  3. Book and synthesis tool • J. Cortadella, M. Kishinevsky, A. Kondratyev,L. Lavagno and A. Yakovlev,Logic synthesis for asynchronouscontrollers and interfaces,Springer-Verlag, 2002 • petrify:http://www.lsi.upc.es/petrify

  4. Design flow Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  5. Specification x x y y z z z+ x- x+ y+ z- y- Signal Transition Graph (STG)

  6. x y z z+ x- x+ y+ z- y- Token flow

  7. xyz 000 x+ 100 y+ z+ z+ x- 110 101 x- x+ y+ z- y- y+ z+ 001 111 y- y+ x- 011 z- 010 State graph

  8. xyz 000 x+ 100 y+ z+ 110 101 x- y- y+ z+ 001 111 y+ x- 011 z- 010 Next-state functions

  9. Gate netlist x y z

  10. Design flow Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  11. DSr LDS LDTACK D DTACK Read Cycle VME bus Bus Data Transceiver Device D DSr LDS VME Bus Controller DSw LDTACK DTACK

  12. STG for the READ cycle DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D LDS DSr VME Bus Controller LDTACK DTACK

  13. LDTACK- DTACK- DTACK- LDTACK- LDS- LDS- Choice: Read and Write cycles DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ D+ LDTACK+ DTACK+ D- DSr- DTACK+ D- DSw-

  14. DTACK- DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- D+ LDTACK+ DTACK+ D- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  15. Circuitsynthesis • Goal: • Derive a hazard-free circuitunder a given delay model andmode of operation

  16. Speed independence • Delay model • Unbounded gate / environment delays • Certain wire delays shorter than certain paths in the circuit • Conditions for implementability: • Consistency • Complete State Coding • Persistency

  17. Design flow Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  18. STG for the READ cycle DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D LDS DSr VME Bus Controller LDTACK DTACK

  19. LDS + LDS = 0 LDS - LDS = 1 Binary encoding of signals DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- LDS- LDS- LDS- LDTACK+ DSr+ DTACK- D+ D- DTACK+ DSr-

  20. 01100 00110 Binary encoding of signals 10000 DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- 10010 LDS- LDS- LDS- LDTACK+ DSr+ DTACK- 10110 01110 10110 D+ D- DTACK+ DSr- (DSr , DTACK , LDTACK , LDS , D)

  21. ER (LDS+) LDS+ QR (LDS-) LDS- LDS- LDS- ER (LDS-) QR (LDS+) Excitation / Quiescent Regions

  22. LDS+ LDS- LDS- LDS- 10110 10110 Next-state function 0  1 0  0 1  1 1  0

  23. DTACK DSr DTACK DSr D LDTACK D LDTACK 00 00 01 01 11 11 10 10 00 00 01 01 11 11 10 10 Karnaugh map for LDS LDS = 1 LDS = 0 - - - 0 0 - 1 1 - - - - - - - - 1 1 1 - - - - - 0 0 - 0 0 0 - 0/1?

  24. Design flow Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  25. DSr+ DSr+ DSr+ Concurrency reduction LDS+ LDS- LDS- LDS- 10110 10110

  26. Concurrency reduction DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS-

  27. State encoding conflicts LDS+ LDTACK- LDS- LDTACK+ 10110 10110

  28. CSC+ CSC- Signal Insertion LDS+ LDTACK- LDS- LDTACK+ 101101 101100 D- DSr-

  29. Design flow Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  30. Complex-gate implementation

  31. Implementability conditions • Consistency • Rising and falling transitions of each signal alternate in any trace • Complete state coding (CSC) • Next-state functions correctly defined • Persistency • No event can be disabled by another event (unless they are both inputs)

  32. Implementability conditions • Consistency + CSC + persistency • There exists a speed-independent circuit that implements the behavior of the STG(under the assumption that ay Boolean function can be implemented with one complex gate)

  33. a- c+ a 100 000 001 b c b+ b+ Persistency a c b is this a pulse ? Speed independence  glitch-free output behavior under any delay

  34. a+ 0000 a+ b+ 1000 b+ 1100 a- a- 0100 c+ c+ 0110 d+ d- d+ 0111 a+ a+ 1111 b- b- 1011 a- c- a- c- 0011 1001 a- c- d- 0001

  35. ab 0000 cd 00 01 11 10 a+ 1000 0 0 0 0 00 b+ 1100 1 0 a- 01 0100 c+ 1 1 1 1 0110 11 d- d+ 0111 1 10 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ER(d+) ER(d-)

  36. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 Complex gate

  37. S z C R Implementation with C elements • • •  S+  z+  S-  R+  z-  R-  • • • • S (set) and R (reset) must be mutually exclusive • S must cover ER(z+) and must not intersect ER(z-)  QR(z-) • R must cover ER(z-) and must not intersect ER(z+)  QR(z+)

  38. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 S d C R

  39. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 S d C R Monotonic covers

  40. C-based implementations S c d d C C R b a c weak c d weak d a a b generalized C elements (gC)

  41. Speed-independent implementations • Implementability conditions • Consistency • Complete state coding • Persistency • Circuit architectures • Complex (hazard-free) gates • C elements with monotonic covers • ...

  42. y- y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ z- w- w+ 1010 0000 0101 w- y+ x+ z- y+ x+ x- 0010 0100 x- x+ y+ z+ 0110 z+ Synthesis exercise 1011 0011 0111 Derive circuits for signals x and z (complex gates and monotonic covers)

  43. y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 Synthesis exercise 1011 wx yz 00 01 11 10 - 1 0 1 00 0011 - 1 0 1 01 - 0 0 0 11 - 1 1 0 10 0111 Signal x

  44. y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 Synthesis exercise 1011 wx yz 00 01 11 10 - 0 0 0 00 0011 - 0 0 0 01 - 1 1 1 11 - 1 0 0 10 0111 Signal z

  45. Logic decomposition: example y- y- 1001 1011 z- w- 1000 0001 w+ y+ w- z- x+ z- w- w+ 1010 0000 0101 0011 w- y+ x+ z- y+ x+ x- 0010 0100 x- x+ y+ z+ 0110 0111 z+

  46. y- 1001 1011 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 0011 w- y+ x+ z- C 0010 0100 x- x+ y+ z+ C 0110 0111 yz=0 yz=1 Logic decomposition: example x y- y w 1001 1011 z- z w- y 1000 0001 w+ y+ z w- z- x+ x w 1010 0000 0101 0011 w- y+ x+ z- w z y 0010 0100 x- z x+ y+ z+ y 0110 0111 x z y

  47. C C Logic decomposition: example s=1 x y- w s 1001 1011 y z- s- z w+ 1001 1000 z- s- y+ w- x w 0011 1000 0001 1010 y+ s- w- z- x+ w x- z y 1010 0000 0101 z w- y+ x+ z- 0111 0010 0100 y s+ x+ y+ x z s=0 z+ 0111 y 0110

  48. Logic decomposition: example s=1 y- y- 1001 1011 z- s- s- w+ 1001 1000 z- s- y+ w- z- w- w+ 0011 1000 0001 1010 y+ s- w- z- x+ x- 1010 0000 0101 y+ x+ x- w- y+ x+ z- 0111 0010 0100 s+ s+ x+ y+ z+ s=0 z+ 0111 0110

  49. Speed-independent Netlist DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D DTACK LDS map csc DSr LDTACK

  50. LDTACK- before DSr+ SLOW FAST Adding timing assumptions DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D DTACK LDS map csc DSr LDTACK

More Related