1 / 32

On the degree distribution of random planar graphs Angelika Steger

On the degree distribution of random planar graphs Angelika Steger. (j oint work with Konstantinos Panagiotou , SODA‘11 ) . TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A. Random Graphs from Classes with Constraints. Motivation.

starbuck
Download Presentation

On the degree distribution of random planar graphs Angelika Steger

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On the degree distribution of random planar graphsAngelika Steger • (jointworkwithKonstantinos Panagiotou, SODA‘11) TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

  2. Random Graphs fromClasseswithConstraints Motivation

  3. Classical Random Graph Theory Paul Erdős, Alfred Rényi On the evolution of random graphs Publ. Math. Inst. Int. Hungar. Acad. Sci., 1960 Given: a set of nvertices. Decideforeach potential edge randomly and independently whetheredgeispresent. edgeprobabilityp →randomgraphGn,p Key property: Independenceofedges.

  4. The Setup The obviousproblem: noindependence!  • Examples (classeswithconstraints): • Trees, Outerplanar Graphs, Planar Graphs, etc. • Generally: excluding a minor (or a fixedsubgraph) • Random Graph: • Thistalk: according to the uniform distribution • Typicalquestionsfor such a randomgraph: • Numberofedges? • DegreeSequence? [Numberofverticesofdegreeloglog(n)?] • Subgraphcount? • Evolution?

  5. Test Case: RandomPlanar Graphs Colin McDiarmid, AS, Dominic Welsh Random planar graphs Journal of Combinatorial Theory, Series B,  2005 Pn := setof all planargraphs on n (labelled) vertices Pn := graphdrawnrandomlyfromPn( → randomplanargraph)  c, C: 0 < c < Prob[Pnconnected] < C < 1

  6. Connectedness – ProofIdea # connectedplanargraphs on n vertices # planargraphs on n vertices Directapproach: Counting ... Prob[Pnconnected ] = We: rough, adhocmethods Giménez, Noy, 2009: |Pn| ≈p · n−7/2 · γn · n! wherep = 4.26094.. · 10−6 γ ≈ 27.2269.. |Cn| ≈c · n−7/2 · γn · n! wherec ≈ 4.10436.. · 10−6

  7. Techniques [in particular: Drmota, Giménez, Noy ...] • ”Classical” approach: • enumeration: count graphs with specific properties… • analytic combinatorics … • Lots of papers ... • This talk: • samplea graph • Boltzmann Sampling • analyze the construction during the execution of the algorithm • find andexploitindependencein theprobabilityspace

  8. Outline • 1) The Power of Independence • 2) Boltzmann Sampling • 3) Block Structure • 4) DegreeSequence

  9. Recall Azuma-Hoeffding : Ifforthereare s.t. then

  10. A General Decomposition Block Decomposition (of a connected graph)

  11. The Key Idea • Observation: cangenerate a graphwithgiven block structurebychoosingtheblocksindependently! • So weobtain a productprobabilityspace. • Condition on the block structure! Specify • Howmanyblocks of sizethereare, and • Howthey „touch“ eachother

  12. Outline • 1) The Power of Independence • 2) Boltzmann Sampling • 3) Block Structure • 4) DegreeSequence

  13. Generation of RandomObjects Duchon, Flajolet, Louchard, Schaeffer Boltzmann Samplers for the Random Generation of Combinatorial Structures Combinatorics, Probability and Computing, 2004

  14. BoltzmannSampler |G| = # of vertices of G G(x) := generatingfunctionforclassG An algorithmΓG (x) thatgenerates an elementG  Giscalled BoltzmannSampleriff • Observations: • Ifwe condition on |ΓG (x)| = n, thenΓG (x) is a uniform sampler. • Expectedsize of theoutputdepends on theparameter x:

  15. A SamplerforConnected Graphs forλCandμCappropriately (detailslater) ΓC (x): ... d ⟶ Po(λC) fori = 1,..., d: Bi ⟶ ΓB (μC) foru∈ Bi (excepttheroot) replaceuwithΓC(x) identifyroot of Biwithv (d1, d2 , …) (B1, B2, …) C ΓC (x) A BranchingProcess:

  16. WhyIsThisUseful ? ΓC (x) x=ρ (d1, d2 , …) (B1, B2, …) C Idea:properties of thesequences(d1, d2 , … , di , …) and (B1, B2 , … , Bi , …)that hold with „extremely high“ probability also hold for a randomobject The di‘sandtheBi‘saredrawnindependently! Underreasonableassumptions:

  17. WhyIsThisUseful (cont.) ? ΓC (ρ) (d1, d2 , …) (B1, B2, …) C • SupposethatthesamplerΓC (ρ)usedthevalues (d1, d2 , …, dn) and (B1, B2, …, Bm) to generateC • Byinspectingthesampler: • nisthe total number of vertices in C • msatisfies and (byChernoff)

  18. ΓC (ρ) (d1, d2 , …) (B1, B2, …) C Note: blocksare independent ... canapplye.g. Chernoffbounds E: ΓC (ρ) generates a graph on nvertices A: B: B1,..., BmsatisfypropertyP BΓ: blocks of ΓC (x) satisfypropertyP

  19. Summary ΓC (ρ) (d1, d2 , …) (B1, B2, …) C In order to bound itsuffices to bound where A: B: B1,..., BmsatisfypropertyP

  20. Outline • 1) The Power of Independence • 2) Boltzmann Sampling • 3) Block Structure • 4) DegreeSequence

  21. Nice Graph Classes [Norin, Seymour, Thomas, Wollan ‘06] • Letbetheset of biconnectedgraphs in • isniceif • Every lookslike • and are „small“: and • Examples: planar, outerplanar, minor-free, ...

  22. Block Structure Panagiotou, St. (SODA’09) Let C be a random graphfrom a ‘nice‘ class. Letbethesingularity of B(x). Thenthefollowingistruea.a.s. • If , then C has blocks of at most logarithmic size. • If , then • The largest block in Ccontainsvertices. • The second largest block containsvertices. • Thereare „many“ blocksthatcontainvertices.

  23. Complex Simple vs. Complex Simple „Plenty“ ofindependence A „lot“ ishidden in the large block e.g. outerplanargraphs, series-parallel graphs e.g. planargraphs

  24. Outline • 1) The Power of Independence • 2) Boltzmann Sampling • 3) Block Structure • 4) DegreeSequence

  25. SamplerConnected Graphs (λ1, λ2 , … ,λi , …) ΓC(x) C (B1, B2 , … ,Bi , …) List of parametersdistributedindep. according to Po(λC). List of vertexrootedbiconnectedgraphsdistr. indep. according to ΓB(μC).

  26. Subcriticalcase • Everyvertexisbornwith a certaindegree • Itthenreceives a certainnumber of newneighbors –indep. of itsbirthdegree pk-l = P [ receivek-lmoreneighborslater ] dl = P[ bornwithdegreel] Intuitively: • innervertexofbiconnectedcomponent • Poissonmanycopiesof arootof a biconnectedcomponent

  27. CriticalCase • Everyvertexisbornwith a certaindegree • Itthenreceives a certainnumber of newneighbors –indep. of itsbirthdegree Intuitively: large component „remainder“

  28. 2-connected ⟶ connected Panagiotou, St. (SODA’11) For‘nice‘ graphclasseswehave: if then wherek0‘(n)andc(.)depend on k0(n)respb(.)

  29. 3-connected ⟶ 2-connected Panagiotou, St. (SODA’11) For‘nice‘ graphclasseswehave: if then wherek0‘(n)andb(.)depend on k0(n)respt(.)

  30. Summary Bernasconi, Panagiotou, St (‘08): - degreesequenceofrandomdissections Bernasconi, Panagiotou, St (‘09): - degreesequenceofseries-parallel graphs Johannsen, Panagiotou (’10): - degreesequenceof3-connected planargraphs Panagiotou, St. (’11): - degreesequenceofplanargraphs Note: similarresultswereobtain (using different methods) byDrmota, Giménez, Noy ...

  31. Work in Progress Maximum degreeof a randomplanargraph: Reed, McDiarmid (`08): θ(log n) Boltzmann samplerapproach: ∃ a vertexofdegree ≧ (1- ε) c log n analyticcombinatoricsapproach: ∄ a vertexofdegree≦ (1+ ε) c log n

More Related