1 / 13

Particulate Matter Emissions from Industrial Sources (With the Iron & Steel Industry as an Example)

Particulate Matter Emissions from Industrial Sources (With the Iron & Steel Industry as an Example). U. Karl, O. Rentz French-German Institute for Environmental Research (DFIU/IFARE) University of Karlsruhe (TH), Germany. Workshop of the UN/ECE Task Force on Integrated Assessment Modeling

starr
Download Presentation

Particulate Matter Emissions from Industrial Sources (With the Iron & Steel Industry as an Example)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Particulate Matter Emissions from Industrial Sources (With the Iron & Steel Industry as an Example) U. Karl, O. Rentz French-German Institute for Environmental Research (DFIU/IFARE) University of Karlsruhe (TH), Germany Workshopof the UN/ECE Task Force on Integrated Assessment Modeling on the Potential and Costs for Controlling Primary Emissions of Fine Particulate Matter Laxenburg, 23 - 24 November 2000

  2. Particulate Matter (PM) Emissions from Industrial Sources • Contents • Introduction - Major sources of PM emissions in industry • Fine Particulate Matter - Fractions of PM 10 in emissions from direct and fugitive emission sources • PM Emission Reduction Measures - Process integrated emission control - End of pipe techniques - Control of secondary emissions • Conclusions

  3. Major Contributors to PM Emissions from Industry • Mining of coal, lignite, metal ores • Manufacture of non-metallic mineral products • (Cement, lime, glass, bricks and tiles) • Manufacture of basic metals • (Iron and steel, non-ferrous metals) • Manufacture of basic chemicals / fertilisers • Manufacture of wood products • (Chipboard, fibreboard) • Manufacture of food products • (Mills, sugar production) • Waste incineration

  4. Fractions of Fine Particulate Matter Direct Emissions Depending on dust control equipment Fabric filters 95 - 98 % PM10 Electrostatic precipitators 95 % PM10 Scrubbers 90 % PM10 Cyclones 50 - 60 % PM10 Fugitive Emissions Highly uncertain information; estimated fractions: Storage and handling 20 % PM10 Industrial building venting up to 75 % PM10 Reference: Remus R.: Feinstaub - Entstehung und Quellen der Feinstaubemissionen - Neue gesetzliche Regelungen; VDI Berichte 1478, 1999

  5. Particulate Matter Emissions from Pig Iron Production Contribution of Fugitive Emissions Reference: Emission Control at Stationary Sources in the Federal Republic of Germany,Volume II DFIU/IFARE 1997

  6. Process Integrated Emission Control Example: Emission Optimised Sintering Reference: EIPPCB Iron & Steel BREF January 1999

  7. Emission Optimised Sintering - Multi-Pollutant Emission Reduction (compared to conventional sintering) Reference: EIPPCB Iron & Steel BREF January 1999

  8. Inertisation as an End of Pipe Measure Example: Blast Furnace Operation - Fume Suppression During Casting Description: Enclosed transport route for the hot metal; Minimal space between molten metal and covers; Flooding with nitrogen, if necessary Reference: Emission Control at Stationary Sources in the Federal Republic of Germany, Volume II, DFIU/IFARE 1997

  9. Conventional Casting Bay Dedusting System Reference: Emission Control at Stationary Sources in the Federal Republic of Germany,Volume II DFIU/IFARE 1997

  10. Economic Aspects of Dust Suppression Systems Reference: EIPPCB Iron & Steel BREF January 1999

  11. Control of Secondary Emissions Primary and secondary off-gases from a converter

  12. Collection Efficiency of Secondary Emissions Example: Basic Oxygen Steelmaking Reference: EIPPCB Iron & Steel BREF January 1999

  13. Particulate Matter (PM) Emissions from Industrial Sources • Summary • Depending on the sector, major contributions result from fugitive emission sources. • Process integrated measures often entail multi-pollutant emission reduction. • EoP Measures: Encapsulation of dust emission sources can lead to significant advantages compared to suction hoods and conventional dust abatement. • Concerning the abatement of secondary emissions the collection efficiency is of mayor importance. • Conclusion • Dust control is more than fabric filters!

More Related