130 likes | 242 Views
WP5: Integration & Validation. IFREMER, NERSC, NIERSC, ODL, NAVTOR, NERC. 4 Tasks, 2 Deliverables. T5.1: Validation of remote sensing products IFREMER, NERSC, NIERSC, ODL Months 13-24 T5.2: Validation of the wave model IFREMER Months 13-24 T5.3: Validation of the sea ice model
E N D
WP5: Integration & Validation IFREMER, NERSC, NIERSC, ODL, NAVTOR, NERC
4 Tasks, 2 Deliverables • T5.1: Validation of remote sensing products • IFREMER, NERSC, NIERSC, ODL • Months 13-24 • T5.2: Validation of the wave model • IFREMER • Months 13-24 • T5.3: Validation of the sea ice model • NERSC, NIERSC, NERC • Months 13-24
4 Tasks, 2 Deliverables • T5.4: Integration • NAVTOR, NERSC • Months 13-24 • D5.1: Validation reports • NERSC • Month 24 • D5.2: Upgraded software • NavTracker & NavPlanner to include waves-in-ice and ice forecasts • NAVTOR • Month 24
Task 5.1: Validation of remote sensing products • Validate independent satellite data from WP4 against each other and available in-situ data. • SAR wave spectra (ODL) • near MIZ: ice-free SAR wave spectra • far MIZ: simple wave sensor (3-axis accelerometer) developed in SWARP (ready 2015) • Other buoys • Ice classification (MIZ area) • from scatterometers/radiometers (Ifremer) • Low resolution (25km) • from SAR/optical images (NIERSC) • High resolution
5.1 Validation of the wave model a) wave parameters Task 5.2: Validation of the wave model Generic validation of wave parameters: • Altimeters (Hs & mss ): in ice-free water • Permanent buoys: general context (Iceland + Barents Sea ) WIFAR 2012 + other field data validation: • Detailed estimation of spectra, specific validation of wave attenuation rates SAR-derived attenuation rates rms error for Hs (%) Ardhuin et al. 2010 (Prévimer) Ardhuin et al. 2010
5.1 Validation of the wave model b) fluxes to ice, ocean & atmosphere Task 5.2: Validation of the wave model Fluxes to ice, ocean and atmosphere: Wave energy balance ↔ wave momentum balance • Relevance for atmospheric forcing? • Input to the ice model (extra drag on ice) ? • Forced vs coupled modeling → implementation of OASIS3-MCT in WW3. • Possible additional runs with IFS+WAM for wind stress diagnostics. • Validation of all « operational centers » with permanent buoys:
Task 5.3: Validation of the sea ice model • In-situ data from cruises (August-September 2012 & September 2013) • Two 5-day periods of drift, recording acceleration in 3 axes. • Other data: local thickness, wind, temperature, ambient noise • High resolution SAR for navigation (2013); wide swath SAR (2012,2013)
Task 5.3: Validation of the sea ice model • MIZ? Can make out at least 1 floe about 100m in the ‘pack’. • Need to look at the floe size distribution in the pack to see what the lines correspond to.
Task 5.3: Validation of the sea ice model • Model results compared to SAR (red lines). • Concentration (AMSR2, 3.125km grid), thickness=1.5m. • Black lines: Dmax=100m (Left), 110m (Right)
Task 5.3: Validation of the sea ice model • Model results compared to SAR (red lines). • Concentration (AMSR2, 3.125km grid), thickness=2.5m. • Black lines: Dmax=130m (Left), 150m (Right)
Task 5.3: Validation of the sea ice model • Other possible data sets • Beaufort Sea 2011-2013 (Hwang et al, 2013): 18 SAR images analysed for FSD • Australian Antarctic SIPEX2 expedition (Sep-Nov 2012): Wave measurements (Kohout) and FSD/thickness observations (video by Toyota) • Images/analysis from WP4
Task 5.4: Integration • Making waves-in-ice forecast stable • eg. back-up options if some input data is unavailable. • Converting model outputs to correct format/grid • NAVTOR uses GRIB1 or GRIB2 (General Regularly-distributed Information in Binary form). • Transferal of model outputs to NAVTOR servers. • Upgrading NavTracker/NavPlanner to include wave/ice information.