1 / 8

7-4 Scale Drawings p. 304-308

7-4 Scale Drawings p. 304-308. Indicator – M4 Solve problems involving scale factors. 7-4 Scale Drawings p. 304-308.

steelebob
Download Presentation

7-4 Scale Drawings p. 304-308

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 7-4 Scale Drawings p. 304-308 • Indicator – M4 Solve problems involving scale factors

  2. 7-4 Scale Drawings p. 304-308 • When actual distances are very far or small, they may be represented more conveniently with proportionally scale drawings or models. This process involves a scale (ratio) which is used to form a proportion. • A map is an example of a scale drawing. The scale on a map is the ratio of the distance on the map to the actual distance.

  3. 7-4 Notes A Scale Drawing/Model represents something that is too large or too small to be drawn/built at actual size. The Scale gives the relationship between the drawing/model measure and the actual measure. Scale Factor-is when you convert the scale to a common unit and simplify

  4. Scale factor • If the scale on a map is ¼ inch represents 1 foot, what is the scale factor? Step 1: Write the scale as a ratio scale¼in actual 1 ft Step 2 : Change to a common unit of measure scale¼in actual 12 in Step 3: Simplify 1/4 ÷ 12 1/4 x 1/12 = 1/48 the scale factor is 1/48 of the actual

  5. Tracy and Tyrone are planning a hiking trip. On the map, their route is 7.5 cm long. The map scale says that 1 cm represents 3 km. What is the actual length of their hike? Let d represent the hiking distance. Write and solve a proportion. Map distance  1 cm = 7.5 cm Actual distance  3 km = d 1 × d = 3 × 7.5 d = 22.5 The actual length 22.5 km. Example 1

  6. Example 2 The scale of a blueprint is 1 in. = 4 ft. If the actual width of a porch is 16 ft, what is the width on the blueprint? Let w represent the porch width. Write and solve a proportion. Blueprint width 1 in. = w_ actual width  4 ft = 16 ft 4 × w = 1 × 16 4w = 16 4 4 w = 4 The width of the blueprint is 4 inches. Cross-multiply Isolate the variable Write a sentence!

  7. On this map, each grid unit represents 50 yards. Find the distance from Patrick’s Point to Agate Beach.

  8. You Try • Find the scale factor of the scale 2cm = 1 m • A blue print is drawn so that ¼ in is 1 foot of the original size. If the actual kitchen is 14 feet long, how long will it appear on the print?

More Related