1 / 12

Instructor: Lichuan Gui lichuan-gui@uiowa

Measurements in Fluid Mechanics 058:180 ( ME:5180 ) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B -5 HL. Instructor: Lichuan Gui lichuan-gui@uiowa.edu Phone: 319-384-0594 (Lab), 319-400-5985 ( Cell) http:// lcgui.net.

stella
Download Presentation

Instructor: Lichuan Gui lichuan-gui@uiowa

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measurements in Fluid Mechanics058:180 (ME:5180)Time & Location: 2:30P - 3:20P MWF 3315 SCOffice Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan Gui lichuan-gui@uiowa.edu Phone: 319-384-0594 (Lab), 319-400-5985 (Cell) http://lcgui.net

  2. Lecture 7. Optical experimentation: Nature of light

  3. Background for optical experimentation Light ( classical Electromagnetic theory ) - radiation that propagates through vacuum in free space, - in the form of electromagnetic waves, - both oscillating transversely to the propagation direction - and normal to each other. - intensities of the electric and magnetic fields oscillate harmonically in time t and along propagation direction x.  - wavelength T – periodof oscillation - frequency of oscillation:  =1/T - wave number: =1/ - phase speed:  = /T =  - speed of light propagation in vacuum: c = 2.998  108  300,000 km/s - relation between amplitudes of electric and magnetic fields:

  4. Background for optical experimentation Wave front - a surface with constant phase in electric/magnetic filed. - plane wave: all wave fronts are plane - spherical wave - cylindrical wave

  5. Background for optical experimentation Polarization - associated with the orientation of the plane of oscillation of the electric field. - circularly polarized - plane/linear polarized - elliptically polarized - randomly polarized (unpolarized)

  6. Background for optical experimentation The colors of light Visible light: wavelength range 380-750 nm Visible light colors Different types of radiation Refractive index c – light speed in vacuum v – light speed in medium

  7. Background for optical experimentation e – charge of an electron me – mass of an electron L – Loschmidt’s number m – molecular weight  – frequency of visualizing light i– resonant frequency of distorted electron fi– oscillator strength of distorted electron Relationship between refractive index and density Lorentz-Lorenz (or Clausius-Mosotti) express: Gladstone-Dale formula - Simplified for gases n – refractive index K – Gladstone-Dale constant  – density Dependency of refractive index of water on temperature Tc (20-34C) for =632.8 nm: In gas mixture of N components:

  8. Background for optical experimentation Light refraction Law of refraction Application of refraction: convergent and divergent glass lenses

  9. Background for optical experimentation Light reflection Law of reflection Critical angle Total internal reflection - glass-air interface: c=42 - glass-waster interface: c=62

  10. Background for optical experimentation Light absorption I0 – radiant intensity of incident light I – radiant intensity of passing light l – length of path – absorption (attenuation) coefficient - extremely large for opaque material - defined at which I=37%I0 - small for transparent material Beer’s law: Penetration Depth: - a measure of how deep light can penetrate into a material. Birefringence (double refraction) decomposition of a ray of light into two rays when it passes through certain anisotropic materials, such as crystals of calcite or boron nitride. - unequal indices of refraction in two directions

  11. Homework - Read textbook 5.1-5.2 on page 98-107 • Questions and Problems: 1 and 2 on page 142 - Due on 09/10

  12. Start to write a Matlab program • Determine location of maximal gray value i – number of lines j – number of columns image01.bmp A(i,j) for i=1,2,3, M; j=i=1,2,3, N 42 31 38 47 40 28 21 30 36 54 47 47 32 31 41 27 30 30 36 25 31 25 28 44 60 49 45 51 44 49 37 45 50 35 54 47 57 41 39 40 44 52 38 52 50 22 23 48 48 43 49 50 42 40 33 47 36 29 40 50 47 26 26 54 56 38 45 42 32 46 40 38 62 48 38 40 51 36 48 58 47 40 48 48 43 43 51 43 30 35 39 34 34 50 36 51 49 38 44 50 52 59 56 46 51 32 43 43 43 45 21 33 35 41 45 33 43 41 52 49 46 37 37 37 49 36 39 50 42 42 44 26 12 25 26 30 47 41 33 53 53 40 50 59 40 33 41 45 39 37 36 29 28 35 44 32 26 44 34 38 35 24 67 53 50 46 49 23 33 46 47 39 36 63 36 33 25 34 55 44 38 28 28 28 30 43 39 27 39 44 39 39 58 37 34 34 48 37 15 38 36 35 36 51 36 60 38 35 40 47 35 53 53 27 30 48 33 47 34 38 35 37 30 40 41 36 50 34 33 53 39 30 34 46 53 52 41 43 41 44 54 41 53 44 34 39 16 24 32 53 50 30 29 57 33 36 56 48 44 56 33 34 37 46 45 54 41 30 24 14 29 39 40 39 46 51 36 39 35 31 51 47 56 57 54 43 50 32 54 46 27 32 28 34 27 34 42 40 39 47 44 36 33 61 30 47 48 59 45 46 38 53 52 28 32 41 52 29 36 36 35 45 36 39 35 22 36 21 24 50 46 54 41 37 27 27 31 23 33 31 33 21 26 34 28 43 40 32 42 50 27 32 44 54 51 60 58 43 31 43 48 40 61 39 36 32 41 35 44 33 50 44 29 37 35 33 55 56 75 85 60 39 40 52 33 50 39 36 23 37 12 21 22 23 55 41 26 27 26 49 68 103 255 167 73 36 12 12 30 28 46 37 19 29 28 30 27 48 43 43 29 40 51 57 84 184 149 63 29 20 5 28 31 47 46 28 35 26 37 35 46 26 37 35 32 39 41 47 59 50 54 48 31 22 21 30 38 37 37 48 20 38 35 33 37 23 27 44 48 59 37 44 42 47 50 36 41 24 37 28 48 35 41 22 50 47 51 32 38 28 41 45 48 55 42 34 38 27 42 22 31 19 24 46 38 44 39 55 44 56 38 40 40 31 33 34 36 32 25 39 19 19 25 27 14 10 54 34 22 43 50 54 52 36 38 21 34 18 46 46 44 52 38 24 30 23 32 45 15 26 48 38 44 32 49 46 47 37 29 47 40 21 47 36 40 38 26 27 31 34 37 35 24 36 31 43 MatlabProgram.m Clear; A=imread('image01.bmp'); [M N]=size(A);Imax=0; Jmax=0; Gmax=0; for i=1:M for j=1:N if A(i,j)>Gmax Gmax=A(i,j); Imax=i; Jmax=j; end end end [Imax JmaxGmax] >> MatlabProgram ans= 17 11 255 12

More Related