240 likes | 283 Views
Explore the world of Distributed Systems in this comprehensive overview covering key concepts, promises, and realities. Learn about network technologies, broadcast networks, Aloha Network, Ethernet, the Internet, routing, point-to-point networks, and solutions for address network issues.
E N D
Networks and Distributed Systems Andy Wang Operating Systems COP 4610 / CGS 5765
Distributed Systems • Allow physically separate computers to work together + Easier and cheaper to mass-produce simple computers • Off-the-shelf components + A company can incrementally increase the computing power
Promises of Distributed Systems • Higher availability • If one machine goes down, use another • Better reliability • A user is able to store data in multiple locations • More security • Each simple component is easier to make secure
Reality of Distributed Systems • Worse availability • A system may depend on many or all machines being up • Worse reliability • One can lose data if any machine crashes • Worse security • Security is as strong as the weakest component • Coordination is difficult because machines can only use the network medium
Network Technologies • Definitions • Network: physical connection that allows two computers to communicate • Packet: a unit of transfer • A sequence of bits carried over the network • Protocol:An agreement between two parties as to how information is to be transmitted
Broadcast Networks • A broadcast network uses a shared communication medium • e.g. wire, Ethernet, cellular phone network • The sender needs to specify the destination in the packet header • So the receiver knows which packet to receive • If a machine were not the intended destination • Discard the packet
Arbitration • Concerns the way to share a given resource • In Aloha network (1970s) • Packets were sent through radios on Hawaiian Islands
Aloha Network • Arbitration: blind broadcast, with a checksum at the end of a packet • Packets might become garbled in the case of simultaneous transmissions
Aloha Network • Arbitration: blind broadcast, with a checksum at the end of a packet • Packets might become garbled in the case of simultaneous transmissions
Aloha Network • Arbitration: blind broadcast, with a checksum at the end of a packet • Packets might become garbled in the case of simultaneous transmissions
Blind Broadcast Receiver: If a packet is garbled discard else sends an acknowledgement Sender: If the acknowledgement does not arrive resend the packet
Ethernet (introduced in the early ‘80s) • By Xerox • First practical local area network • Uses wire (as opposed to radio) • Broadcast network • Key advance: a new way for arbitration
Ethernet’s Arbitration Techniques • Carrier sensing: Ethernet does not send unless the network is idle • Collision detection: sender checks if packet is trampled • If so, abort, wait, and retry • Adaptive randomized waiting: a sender picks a bigger wait time (plus some random duration) after a collision
The Internet • A generalization of interconnected local area networks • Uses machines to interconnect various networks • Routers, gateways, bridges, repeaters • Act like switches • Packets are copied as they transmitted across different networks LAN 2 LAN 1
Routing • Concerns how a packet can reach its destination • Typically, a packet has to go through multiple hops before getting to a destination • Each hop is a router, which directs a packet to the next hop • Routing is achieved through routing tables
Routing Table Updates • Each routing entry contains a cost • <destination, next hop, # hops> • Neighbors periodically exchange routing table entries • If the neighbor has a cheaper route, use that one instead
Point-to-Point Networks • Instead of sharing a common network medium, all nodes in the network can be connected directly to a router/switch
Point-to-Point Networks + Higher link performance (no collisions) + Greater aggregate bandwidth than a single link
Point-to-Point Networks + Network capacity can be upgraded incrementally + Lower latency (no arbitration)
Crossbar buffers buffers Issues in Point-to-Point Networks • Congestion occurs when everyone sends to the same output link on a switch
Crossbar buffers buffers Solutions 1. No flow control: Packets get dropped when the receiving buffer is full • Downloading 2GB of movie across the Internet can make many people unhappy
Solutions 2. Flow control between switches: a switch does not send until the buffer space is available in the next switch • Problem: cross traffic Crossbar buffers buffers
Solutions 3. Per-flow flow control: a separate set of buffers is allocated for each end-to-end stream • Problem: fairness ABAB AAAA ACBC BBBB CCCC