320 likes | 563 Views
PLASMA. Artificial classical atoms and molecules: from electrons to colloids and to superconducting vortices. François Peeters V. Bedanov, V. Schweigert, M. Kong, B. Partoens G. Piacente, J. Betouras S. Apolinario. NbSe 2 measured by STM. Wigner crystal.
E N D
PLASMA Artificial classical atoms and molecules: from electrons to colloids and to superconducting vortices François Peeters V. Bedanov, V. Schweigert, M. Kong, B. Partoens G. Piacente, J. Betouras S. Apolinario
NbSe2 measured by STM Wigner crystal Ground state of the electron gas in metals E. Wigner, Physical Review 46, 1002(1934) „If the electrons had no kinetic energy, they would settle in configurations which correspond to the absolute minima of the potential energy. These are close-packed lattice configurations, with energies very near to that of the body-centered lattice....“ • 2D electrons on liquid helium • C.C. Grimes and G. Adams, PRL 42, 795 (1979) • Colloidal particles on surfaces or interfaces • Dusty plasmas • Charged metallic balls, …. • Superconductors Abrikosov lattice (1957) • Nobel prize in 2003
Theoretical research on colloids in India • Bangalore (Indian Institute of Science): • A.K. Sood • H.R. Krishnamurthy • J. Chakrabarti • Kolkata (S.N. Bose National Research Centre for Basic Sciences): • S. Sengupta
Confinement • Geometrical constrainted motion • 1D: microchannels • 0D: artificial atoms • Self-organization in reduced dimensions • Reduced phase space • Diffusion (e.g. anisotropic diffusion) • Non-linear dynamics
Hamiltonian (2D) Coupling constant Hamiltonian: artificial atom Energy unit Length unit Kinetic energy Confinement Interaction For vertical quantum dot:
Confinement potential • Typical energy scale • The considered artificial atoms are two-dimensional • The number of electrons, the size and the geometry of artificial atoms can be changed arbitrarily Differences with real atoms Parabolic potential Coulomb potential Real atom Artificial atom • Vertical quantum dot:= 3 meV • Real atom: Ry = 13.6 eV
Potential energy • Ground state Energy minimalization Classical artificial atoms () New units:
Dusty plasma Electrons on He surface (1,7) (1,7.12) Superfluid helium Bose-Einstein condensate Condensate density Superconducting vortices in a disk W. T. Juan, et al, Phys. Rev. E 58, 6947 (1998) Leiderer et al., Surf. Sci.113, 405 (1982) MIT, Ketterle group, 2001 I.V. Grigorieva et al, Phys. Rev. Lett. 96, 077005 (2006) Vortices in helium, imaged by injecting electrons that become trapped at the vortex core. (R.E. Packard) Ground state configurations Classical configurations (1,7,12) (1,7) • N Configuration • 1 • 2 • 3 • 4 • 5 • 1, 5 • 1, 6 • 1, 7 • 2, 7 • 2, 8 • 3, 8 • 3, 9 • 4, 9 • 4, 10 • 5, 10 • 1, 5, 10 Classical atoms (J.J. Thomson (1904)) V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667 (1994)
Superparamagnetic colloidal spheres I.V. Grigorieva et al, Phys. Rev. Lett. 96, 077005 (2006) M. Saint Jean et al, Europhys. Lett. 55, 45 (2001) vortex 10 mm Decoration exp. Nb:d = 150 nm; D 1µm; T 3.5 K 1kV~ Metallic balls Generic model (2D)for different systems, energy and length scales
(1,5) (6) Saddle point N=6 M. S. Jean et al ( Europhys. Lett. 55, 45 2001)) Saddle point
6 2 Normal modesEigenfrequencies and eigenvectors Exp. on dusty plasma: A. Melzer, Phys. Rev. E 67, 016411 (2003) V.A. Schweigert and F. Peeters, Phys. Rev. B 51, 7700 (1995)
Magic numbers exp.
Magic number clusters N=19 (1,6,12) N=20 (1,7,12) V.A. Schweigert and F.M. Peeters, Phys. Rev. B 51, 7700 (1995) A. Melzer, A. Piel (Kiel University) => dusty plasma (Phys. Rev. Lett. 87, 115002 (2001))
Radial fluctuations Relative angular intershell fluctuations Melting: small clusters 1/ = kBT/<V> Anisotropic melting Two-step melting process Experiments on paramagnetic colloids: R. Bubeck et al, Phys. Rev. B 82, 3364 (1999). V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667 (1994)
Artificial molecules d Competition between electron correlations in the single dots and correlations between electrons in the different dots.
Competition between particle correlations in the single atoms and correlations between particles in the different atoms. Classical artificial molecules N=10 B. Partoens and F.M. Peeters, Phys. Rev. Lett. 79, 3990 (1997)
2x(3 particles) 2x(5 particles) 2x(5 particles) Molecule
=r0/ r0=(2q/m02)2/3 E0=(m 02q4/22)1/3 Phase diagram zig-zag transition Continuous transition 2nd order. Q1D channels G. Piacente, B. Betouras and F.M. Peeters., PRB 69, 045324 (2004)
Complex plasma y x (B. Liu and J. Goree, Phys. Rev. Lett. 71, 046410 (2005) Ion chains Crystalline ion structures in a Paul trap Institut für Physik, Universität Mainz, M Block, A Drakoudis, H Leuthner, P Seibert and G Werth A. Melzer, Phys. Rev. E 73, 056404 (2006) Experimental evidence for the “zig-zag” transition
shift over a/4 2 4 transition zig-zag Discontinuous transition 1st order
Lorentian shaped constriction Driving force V0’ 1/ Pinning and de-pinning of a Q1D system G. Piacente and F.M. Peeters, PRB 72, 205208 (2005)
Phys. Rev. Lett, 97, 208302 (2006) W=60m L=2mm =4.55 m 2.5 Lane reduction at the constriction 7 lanes 6 lanes Increase of the density (no driving force) Non-linear physics G. Piacente and F.M. Peeters, PRB 72, 205208 (2005)
Elastic Depinning(small values of V0’) Quasi-elastic Depinning(large values of V0’) f < fc f > fc Pinning Depinning
v ( f – fc ) β Quasi-elastic depinning Elastic depinning =2/3 as for Infinite 2D Systems
Tuning of the critical exponent Crossover from the elastic to quasi-elastic flow
Conclusions • 0D systems artificial atoms • Ground state: ring structures Thomson model • Lowest normal mode: intershell rotation (small N) vortex / antivortex rotation • Melting: anisotropic (radial / angular) • Artificial molecules • ‘Structural’ phase transitions • 1D systems microchannels • Chains: 1 2: zig-zag transition (continuous) 2 4: first-order transition • Constriction:tuning of the critical exponent: from elastic to quasi-elastic (no plastic depinning)
14Mhz Dusty Plasma (Complex Plasma) Scheme of the experimental setup. Pictures are taken from the website of Lin I and A. Piel’s group
position of the particle after n iteration steps =x,y i=1,…,N Force: Dynamic matrix: The potential energy in the vicinity of this configuration can be expanded in a Taylor series: Newton optimization technique Eigenfrequencies normal modes
M. Saint Jean et al, Europhys. Lett. 55, 45 (2001) 10 mm 1kV~ Metallic balls
5 nm 18 nm InAs/GaAs Real atoms versus artificial atoms