1 / 9

Thermospheric Control

CHAMP thermospheric density enhancement. Thermospheric Control. Causes of upwelling Large-scale Joule heating Ion upflow Soft electron precipitation Alfv é n waves, small-scale FAC. L ü hr et al. 04. Liu et al. 05. L ü hr et al. 04. 1. 1500. 1600. 1700. 1400. 1800. 1900. 2000.

Download Presentation

Thermospheric Control

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAMP thermospheric density enhancement Thermospheric Control • Causes of upwelling • Large-scale Joule heating • Ion upflow • Soft electron precipitation • Alfvén waves, small-scale FAC Lühr et al. 04 Liu et al. 05 Lühr et al. 04 1

  2. 1500 1600 1700 1400 1800 1900 2000 2100 Ionospheric Control Convective transport to the cusp  1010 ions / cm2-s Coster, Erickson, Foster MIT Haystack Observatory 2

  3. 1945 UT 30º Lat 20 Nov 2003 Foster et al. 05 3

  4. Magnetospheric dynamo ( geomagnetically fixed) + Convective plasma surge  Outflow surge Sondrestrom ISR 11 Feb 2002 Semeter et al. 03 4

  5. 5

  6. Observations from low-altitude satellites (FAST) 13 Feb 1997 polar cap Paschmann et al. ‘03 6

  7. Centrifugal (Ponderomotive) Streltsov and Lotko 2008 7

  8. Observations at higher altitude • Intense electromagnetic activity in the “PSBL” • ~ 1-min (Pi 2) oscillations • Oscillations confined mainly to downward current channel • Integrated Poynting flux is upward polar cap plasmasheet down up Evidence for a high-altitude resonator? 19 May 2002 Johansson et al.‘04 8

  9. REFERENCES Moore, T. (1980), Modulation of terrestrial ion escape flux composition (by low-altitude acceleration and charge exchange chemistry), J. Geophys. Res., 85(A5), 2011-2016. Lühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt (2004), Thermospheric upwelling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi:10.1029/2003GL019314. Liu, H., H. Lühr, V. Henize, and W. Köhler (2005), Global distribution of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 110, A04301, doi:10.1029/2004JA010741. Foster, J.C., et al. (2005), Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 110, A09S31, doi:10.1029/2004JA010928. Semeter, J., C. J. Heinselman, J. P. Thayer, R. A. Doe, and H. U. Frey (2003), Ion upflow enhanced by drifting -region plasma structure along the nightside polar cap boundary, Geophys. Res. Lett., 30, 2139, doi:10.1029/2003GL017747. Evans, D., N. Maynard, J. Trøim, T. Jacobsen, and A. Egeland (1977), Auroral Vector Electric Field and Particle Comparisons, 2, Electrodynamics of an Arc, J. Geophys. Res., 82(16), 2235-2249. Lotko, W. (2007), The magnetosphere–ionosphere system from the perspective of plasma circulation J. Atmos. Sol.-Terr. Phys., 69(3), 191-211. Paschmann, G., et al. (2002) Auroral Plasma Physics, Chapter 4 - In Situ Measurements in the Auroral Plasma Space Sci. Rev., 103(1-4), doi:10.1023/A:1023082700768, pps. 93-208. Streltsov, A.V., and W. Lotko (2008), Coupling between density structures, electromagnetic waves and ionospheric feedback in the auroral zone, J. Geophys. Res., 113, A05212, doi:10.1029/2007JA012594. Johansson, T., S. Figueiredo, T. Karlsson, G. Marklund, A. Fazakerley, S. Buchert, P.-A. Lindqvist, and H. Nilsson (2004), Intense high-altitude auroral electric fields - temporal and spatial characteristics Ann. Geophys., 22, 2485-2495.

More Related