1 / 9

Ford-Fulkerson algorithm for the Maximum F low problem

Ford-Fulkerson algorithm for the Maximum F low problem. Maximum Flow Problem Given a connected graph G=(V,E), a capacity c:E->R+, and two nodes s and t, find a maximum s-t flow. Minimum Cut Problem

stew
Download Presentation

Ford-Fulkerson algorithm for the Maximum F low problem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ford-Fulkerson algorithm for the Maximum Flow problem • Maximum Flow Problem • Given a connected graph G=(V,E), a capacity c:E->R+, and two nodes s and t, find a maximum s-t flow. • Minimum Cut Problem • Given a connected graph G=(V,E), a capacity c:E->R+, and two nodes s and t, find a minimum s-t cut. • Ford-Fulkerson Labeling Algorithm • (Initialization) Let x be an initial feasible flow (e.g. x(e) = 0 for all e in E). • (Flow augmentation) If there are no augmenting path from s to t on the residual network, then stop. The present x is a max flow. If there is a flow augmenting path p, replace the flow x as • x(e)=x(e)+delta if e is a forward arc on p. • x(e)=x(e)-delta if e is a backward arc on p. • where delta is a minimum value of residual capacity on p. Repeat this step.

  2. Ford-Fulkerson Algorithm 0 flow 2 4 4 capacity G: 0 0 0 6 0 8 10 10 2 0 0 0 0 10 s 3 5 t 10 9 Flow value = 0

  3. 8 X 8 X 8 X Ford-Fulkerson Algorithm 0 flow 2 4 4 capacity G: 0 0 0 6 0 8 10 10 2 0 0 0 0 10 s 3 5 t 10 9 Flow value = 0 2 4 4 residual capacity Gf: 6 8 10 10 2 10 s 3 5 t 10 9 Gf is the “differential” graph of G vis-s-vis the flow f

  4. 10 X X 2 10 X 2 X Ford-Fulkerson Algorithm 0 2 4 4 G: 0 8 8 6 0 8 10 10 2 0 0 8 0 10 s 3 5 t 10 9 Flow value = 8 2 4 4 Gf: 8 6 8 10 2 2 10 s 3 5 t 2 9 8 Gf is the “differential” graph of G vis-s-vis the flow f

  5. 6 X X 6 6 X 8 X Ford-Fulkerson Algorithm 0 2 4 4 G: 0 10 8 6 0 8 10 10 2 2 0 10 2 10 s 3 5 t 10 9 Flow value = 10 2 4 4 Gf: 6 8 10 10 2 10 s 3 5 t 10 7 2

  6. 2 X 8 X X 0 8 X Ford-Fulkerson Algorithm 0 2 4 4 G: 6 10 8 6 6 8 10 10 2 2 6 10 8 10 s 3 5 t 10 9 Flow value = 16 2 4 4 Gf: 6 6 8 4 10 2 4 s 3 5 t 10 1 6 8

  7. 3 X 9 X 7 X 9 X 9 X Ford-Fulkerson Algorithm 2 2 4 4 G: 8 10 8 6 6 8 10 10 2 0 8 10 8 10 s 3 5 t 10 9 Flow value = 18 2 2 4 2 Gf: 8 6 8 2 10 2 2 s 3 5 t 10 1 8 8

  8. Ford-Fulkerson Algorithm 3 2 4 4 G: 9 10 7 6 6 8 10 10 2 0 9 10 9 10 s 3 5 t 10 9 Flow value = 19 3 2 4 1 Gf: 9 1 6 7 1 10 2 1 s 3 5 t 10 9 9

  9. Ford-Fulkerson Algorithm 3 2 4 4 G: 9 10 7 6 6 8 10 10 2 0 9 10 9 10 s 3 5 t 10 9 Cut capacity = 19 Flow value = 19 3 2 4 1 Gf: 9 1 6 7 1 10 2 1 s 3 5 t 10 9 9

More Related