1 / 18

Douglas E. Peplow, C. David Sulfredge, Robert L. Sanders, and Robert H. Morris

Calculating Nuclear Power Plant Vulnerability Using Integrated Geometry and Event/Fault Tree Models. ANS/EP&R Washington, DC November 20, 2002. Douglas E. Peplow, C. David Sulfredge, Robert L. Sanders, and Robert H. Morris

stu
Download Presentation

Douglas E. Peplow, C. David Sulfredge, Robert L. Sanders, and Robert H. Morris

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Calculating Nuclear Power PlantVulnerability Using Integrated Geometry andEvent/Fault Tree Models ANS/EP&R Washington, DC November 20, 2002 Douglas E. Peplow, C. David Sulfredge, Robert L. Sanders, and Robert H. Morris Oak Ridge National Laboratory Todd A. Hann Defense Threat Reduction Agency

  2. Terrorist Attacks Against American Targets Using Car-Bomb Technology

  3. Event/Fault Tree Models and Geometry Models

  4. Approaches to Blast Modeling • Hydrocode modeling • Detailed, first-principles analysis • Complex computer codes (CTH, DYNA-3D, FLEX, etc.) • Long computer run times • Correlation modeling • Based on experimental test data • Results given using scaled parameters • Quick, with good general accuracy

  5. Early Nuclear Blast Testing • Nuclear tests at Nevada Test Site measured the blast resistance for many types of industrial and utility equipment

  6. Scaling Laws Allow Data Correlation • Hopkinson scaling parameters • P = F1( R/w1/3) • I/w1/3 = F2( R/w1/3) • t/w1/3 = F3( R/w1/3) • Also known as “cube root” scaling

  7. Reflective Blast Enhancement • Correlations can account for effect of walls surrounding the charge

  8. VISAC Concrete Breach Models • NDRC experiments for air blast against concrete walls

  9. Overpressure Fragility Curves • Critical components require fragility functions • Plot of Pkill versus peak overpressure • Either linear or logarithmic interpolation

  10. For Independent Events… • P = P1P2…PJ • P = ΣPi – ΣPiPj + … ± P1P2…PJ = 1 - (1-P1)(1-P2)…(1-PJ)

  11. Event/Fault Tree Evaluation • Brute Force • Monte Carlo • Minimal Cut Set Analysis • Rare Events Approximation • Upper Bound • Exact with Passes

  12. Minimal Cut Sets • Sequence = E3E4 + E1E2E5 + E1E4E5 + … = C1 + C2 + C3 + … • P(Seq.) = ΣP(Ci) - ΣP(CiCj) + ΣP(CiCjCk) - … ~ ΣP(Ci) < 1 – (1-P(C1))(1- P(C2))(1- P(C3))…

  13. seq1 = /ecs = /epumpa /emova /ecva /tank /dga /emov1 + /tank /dga /ecvb /emov1 /emovb /dgb /epumpb SAPHIRE Example Problem seq2 = ecs /ccs = ecva emovb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + ecva epumpb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + epumpa emovb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + epumpa epumpb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + emova ecvb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + emova emovb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + emova emovb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + ecva ecvb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + emova epumpb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + ecva ecvb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + emov1 /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + epumpa epumpb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + epumpa ecvb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + ecva emovb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + ecva epumpb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + emova ecvb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + emov1 /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + epumpa emovb /cmov1 /tank /ccvb /cmovb /cpumpb /dgb + emova epumpb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + epumpa ecvb /cmov1 /tank /dga /cmova /ccva /cpumpa /dgb + dga /cmov1 /tank /ccvb /cmovb /cpumpb /dgb

  14. Example Problem – severe damage

  15. Example Problem – severe damage

  16. Vulnerability Maps

  17. Geometry Fidelity

  18. Summary • Correlations using real data are faster than hydrocode calculations yet still accurate • Need fault/event tree calculator that handles large component failure probabilities • Geometric fidelity is important in obtaining useful results

More Related