1 / 28

The Other Cell Division: Making Sex Cells

The Other Cell Division: Making Sex Cells. Meiosis – A Source of Distinction. Ever wonder why you don’t look exactly like either your mother or father? Or why you and your siblings are not identical? It’s all in MEIOSIS!. 2 Major Roles of Meiosis .

stu
Download Presentation

The Other Cell Division: Making Sex Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Other Cell Division: Making Sex Cells

  2. Meiosis – A Source of Distinction Ever wonder why you don’t look exactly like either your mother or father? Or why you and your siblings are not identical? It’s all in MEIOSIS!

  3. 2 Major Roles of Meiosis • Make GAMETES (egg and sperm); diploid (2n) cells make haploid (n) cells • Genetic Variation

  4. GAMETES Meiosis takes a cell with two copies of every chromosome (diploid) and makes cells with a single copy of every chromosome (haploid). This change (diploid  haploid) is criticalif two gametes combine to make a new individual In meiosis, one diploid cells produces four haploid cells.

  5. Genetic Variation Meiosis scrambles the specific forms of each gene that each sex cell (egg or sperm) receives. Increases genetic diversity (accomplished through independent assortmentand crossing-over). Genetic diversity is important for the evolution of populations and species.

  6. Meiosis Parent cell – chromosome pair Chromosomes copied 1st division - pairs split 2nd division – produces 4 gamete cells with ½ the original no. of chromosomes

  7. Homologous Chromosomes Homologous Chromosomes are: The same size The same shape Have the same genes Different forms of gene

  8. Meiosis I : Separates Homologous Chromosomes • Interphase • Each of the chromosomes replicate • The result is two genetically identical sister chromatids which remain attached at their centromeres

  9. Prophase I • Each pair of sister chromatids move to their homologous pair and join together (synapsis) in a group of four called a tetrad. • This is when crossing over can occur. • Crossing Over is the exchange of segments during synapsis.

  10. Metaphase I • The chromosomes line up at the equator (metaphase 1 plate) attached by their centromeres to spindle fibers from centrioles. • Still in homologous pairs

  11. Anaphase I • The spindle guides the movement of the chromosomes toward the poles • Sister chromatids remain attached • Move as a unit towards the same pole • Thehomologous chromosomes are separated to opposite poles

  12. Telophase I • This is the end of Meiosis I. • The cytoplasm divides, forming two new daughter cells. • Each of the newly formed cells has half the number of the parent cell’s chromosomes (23 unique chromosomes) • but each chromosome is already replicated (sister chromatids) and the daughter cells are ready for Meiosis II

  13. Cytokinesis • Occurs simultaneously with Telophase I • Forms 2 daughter cells • Plant cells – cell plate • Animal cells – cleavage furrows • NO FURTHER REPLICATION OF GENETIC MATERIAL (S Phase) PRIOR TO THE SECOND DIVISION OF MEIOSIS

  14. Meiosis II : Separates sister chromatids • There is no Interphase. • Results in 4 haploid daughter cells (gametes)

  15. Prophase II • Each of the daughter cells forms a spindle, and the sister chromatids move toward the equator

  16. Metaphase II • The chromosomes are positioned on the metaphase platein a mitosis-like fashion

  17. Anaphase II • The sister chromatids finally separate • The sister chromatids of each pair move toward opposite poles • Now individual chromosomes, we no longer call them chromatids!

  18. Telophase II and Cytokinesis • Nuclei form at opposite poles of the cell and cytokinesis occurs • After completion of cytokinesis there are four daughter cells • All are haploid(n) • This is the whole point of meiosis!

  19. Figure 13.7 The stages of meiotic cell division: Meiosis II

  20. One Way Meiosis Makes Lots of Different Sex Cells (Gametes) – Independent Assortment Independent assortment produces 2n distinct gametes, where n = the number of unique chromosomes. In humans, n = 23 and 223 = 8388608. That’s a lot of diversity by this mechanism alone.

  21. Another Way Meiosis Makes Lots of Different Sex Cells – Crossing-Over Crossing-over multiplies the already huge number of different gamete types produced by independent assortment.

  22. The Key Difference Between Mitosis and Meiosis is the Way Chromosomes Uniquely Pair and Align in Meiosis Mitosis The first (and distinguishing) division of meiosis

More Related