330 likes | 453 Views
Brief Overview of Wyner-Ziv CODEC and Research Plan. Jin-soo KIM. Contents. Overview of Wyner-Ziv CODEC Application of Wyner-Ziv CODEC Basic Principle of WZ CODEC Generation of S.I. at the Decoder How to Encode WZ frames Research Plan Q&A. Application of WZ CODEC. 2010.
E N D
Brief Overview of Wyner-Ziv CODEC and Research Plan Jin-soo KIM
Contents • Overview of Wyner-Ziv CODEC • Application of Wyner-Ziv CODEC • Basic Principle of WZ CODEC • Generation of S.I. at the Decoder • How to Encode WZ frames • Research Plan • Q&A
2010 Coding Efficiency Network awareness + implementation? 2005 HDTV SVC H.264 2003 Mobile TV MPEG4 1999 Hand PC Video Conferencing MPEG2 H.263 Mobile Phone 1994 1992 MPEG1 Year Video coding : history and trends H.265(?) mobile • Mobile : 3low1high • Low (battery, bandwidth, CPU) • High cost
(Conventional) Interframe Video Coding PredictiveInterframe Encoder PredictiveInterframe Decoder X’ Side Information
Low Complexity Encoder Wyner-ZivIntraframe Encoder Wyner-ZivInterframe Decoder X’ Side Information [Witsenhausen, Wyner, 1980] [Puri, Ramchandran, Allerton 2002] [Aaron, Zhang, Girod, Asilomar 2002] …
Applications of WZ codec • Light encoder and light decoder B. Girod, A. Aaron, S. Rane, D. Rebollo-Monedero, “Distributed video coding,” Proceedings of the IEEE, Vol93, pp71-83, Jan. 2005.
Applications of WZ codechttp://www.discoverdvc.org/deliverables/Discover-D4.pdf • Wireless low power video surveillance • Disposable video cameras • Sensor network • Multi-view image acquisition • Medical applications • Networked camcoders
Applications of WZ codechttp://www.discoverdvc.org/deliverables/Discover-D4.pdf • SensorCamPillCamWearableCamDisposable cam.ScanCam
Lossless Compression with Side Information R≥ H(X|Y) Encoder Decoder Statistically dependent Side Information Wyner-Ziv showed that the conditional rate-mean squared error distortion function for X is the same whether the side information Y is available only at the decoder, or both at the encoder and the decoder. R≥ H(X|Y) Encoder Decoder Statistically dependent [Slepian, Wolf, 1973] Side Information
Shannon Theory with side info. • Example) x : dice number • H(X) = 6Σlog26 = 2.58 bits • Shannon coding theorem • No error, if H(X) < R(X) = 3 bits • If R(X) = 2, {00,01,10,11}{1,2,{3,4},{5,6}} • With side information Y=“even number” • H(X|Y) = 3Σlog23 = 1.58 < R(X|Y) = 2 Information loss X X R decoder encoder Y
Wyner-Ziv coding (lossy) • A. Majumdar, R. Puri, P. Ishwar, K. Ramchandran, “Complexity/performance trade-offs for robust distributed video coding,” IEEE ICIP2005, Vol. 2, pp678-81, 11-14 Sept. 2005 • WZ = quantization + Slepian-Wolf • Random coset partitioning operation, • 3bit-info can be represented by 2bit(LSB first increase Δ) • X : original value U : quantized value • Y : side information in the decoder • given Y + sent 10U=101
History of DVC • Slepian and Wolf : lossless DVC (1973) • “Noiseless coding of correlated information sources,” IEEE Tr. On Information Theory, 1973. • Wyner and Ziv : lossy DVC (1976) • “The rate-distortion function for source coding with side information at the decoder,” IEEE Tr. Information Theory, 1976. • Ramchandran in Berkeley : PRISM (2002) • Power-efficient, Robust, hIgh-compression, Syndrome-based Multimedia coding • Girod in Stanford : Good review (2005) • “Distributed video coding,” IEEE Proceedings, 2005. • EU : DISCOVER(~2006), www.discoverdvc.org • DIStributed COding for Video sERvices
Towards Practical Slepian-Wolf Coding • Convolution coding for data compression [Blizard, 1969] • Convolutional source coding [Hellman, 1975] • Syndrome source coding [Ancheta, 1976] • Coset codes [Pradhan and Ramchandran, 1999] • Trellis codes [Wang and Orchard, 2001] • Turbo codes [García-Frías and Zhao, 2001] [Bajcsy and Mitran, 2001] [Aaron and Girod, 2002] • LDPC codes [Liveris, Xiong, and Georghiades, 2002] • . . . • . . .
Motion Compensation • Motion-compensated interpolation (MC-I)using the decoded Key frame at time t-1 & t+1
Motion Compensation • Motion-compensated extrapolation (MC-E)estimate the motion between the Wyner-ziv frame at time t-2 and the Key frame at time t-1
Wyner-Ziv Residual Video Codec WZ frames X’ WZ Decoder WZ Encoder W X Xer Xer Y • Residual of a frame with respect to an encoder reference frame (Xer) is fed into a Wyner-Ziv encoder. To avoid drift, Xer should be replicable at the decoder. • Since the decoder takes into account motion, Y is expected to be a better estimate of frame X than Xer. The Wyner-Ziv decoder uses both Y and Xer to calculate the reconstruction X’. [Aaron, Zhang, Girod, Asilomar 2002]
Pixel-Domain Wyner-Ziv Video Codec Interframe Decoder Intraframe Encoder Slepian-Wolf Codec WZ frames Reconstruction Turbo Decoder Turbo Encoder W’ Scalar Quantizer W Buffer Request bits Side information Y Interpolation/ Extrapolation Key frames Conventional Intraframe decoding Conventional Intraframe coding I I’ [Aaron, Zhang, Girod, Asilomar 2002]
Pixel-Domain Wyner-Ziv Video Codec After Wyner-Ziv Decoding Decoder side informationgenerated by motion-compensated interpolationPSNR 24.8 dB 16-level quantization – 2.0 bpp0 pixels in errorPSNR 36.5 dB [Aaron, Zhang, Girod, Asilomar 2002]
DCT-Domain Wyner-Ziv Video Codec Intraframe Encoder Interframe Decoder WZ frames Dk Dk’ Turbo Encoder Recon Scalar Quantizer Turbo Decoder W W’ DCT IDCT Buffer Request bits Side information Yk For each transform band k DCT Y Interpolation/ Extrapolation Key frames Conventional Intraframe coding I Conventional Intraframe decoding I’ [Aaron, Zhang, Girod, Asilomar 2003]
Interframe 100% 3 dB 6 dB Rate-Distortion Performance - Salesman Encoder Runtime Pentium 1.73 GHz machine • Every 8th frame is a key frame • Salesman QCIF sequence at 10fps • 100 frames [Aaron, Zhang, Girod, Asilomar 2003]
Salesman at 10 fps DCT-based Intracoding 149 kbps PSNRY=30.0 dB Wyner-Ziv DCT codec 152 kbps PSNRY=35.6 dB GOP=8 [Aaron, Zhang, Girod, Asilomar 2003]
Conclusion • Increase efficiency of DVC • Reduce H(X) : simple ME/MC? • Increase H(Y) : better interpolation/extrapolation • Stronger correlation between X and Y. X X R encoder decoder Y X? Y? P(X/Y)
Conclusion • Distributed coding is a fundamentally new paradigm for video compression • Slepian-Wolf encoding, is fundamentally harder for practical applications due to the general statistics of the correlation channel • The rate-distortion performance of Wyner-Ziv coding does not yet reach the performance of conventional interframe coder • It is unlikely that distributed video coding algorithm will ever beat conventional video coding schemes in R-D performance • Many authors believe that distributed coding techniques will soon complement conventional video coding to provide the best overall system performance and enable novel applications
Research Plan Plan ■ Planand achievements done Now
Q&A Thank you