170 likes | 326 Views
Antimatter (e+, Ps, H-bar) physics Laboratory. Lea Di Noto Department of Physics –University of Trento INFN. Research group. Roberto S. Brusa S. Mariazzi ( assegnista cof . INFN) L. Di Noto (PhD) L. Penasa ( tecnico l) M. Bettonte ( tecnico nl ) . e+ - Ps.
E N D
Antimatter (e+, Ps, H-bar) physics Laboratory Lea Di Noto DepartmentofPhysics–Universityof Trento INFN
Research group Roberto S. Brusa S. Mariazzi ( assegnistacof. INFN) L. Di Noto (PhD) L. Penasa (tecnico l) M. Bettonte (tecniconl) e+ - Ps detectors Giancarlo Nebbia (INFN) laser G. Ferrari (CNR)
AEgIS (antimatter experiment :gravity interferometry spectroscopy) Goals: • Measurementof g on anti-hydrogen • Anti-hydrogenspectroscopy Methods: • Produce an Hbar beam • Moirèdeflectometer Motivations: • verify the Weak equivalence principle (WEP) • Verify the CPT antimatter disappearance
activities of Trento group p e+ beam Ps cooling & converter Ps spectroscopy 2 1 3 Positron source Positronaccumulator 1 T - 100 mK Anti-hydrogen production Transfer line AD SIDE 5 T - 4K trap Moirè Deflectometer /31
AEgIS experiment in short Positron-cooled positronium converter 2 ns bunch 108positronis (1 mm in diameter) Lasers for Ps excitation in Rydberg states Antiprotons 100 mK Anti hydrogen beam Stark acceleration Moirè deflectometer
Vacuum Ps Ps Ps Ps Ps 2. Positronium cooling & converter Positron beam Positronium converter Mariazzi S, Salemi A and Brusa R S 2008 Phys. Rev. B 78 085428
Trento TOF Apparatus zo BEAM Prompt peak 16 ns 2 channeltrons target position 5 NaIscintillators
Ps cooling – first result of Ps cooling Mariazzi S, Salemi A and Brusa R S 2008 Phys. Rev. B78 085428 Mariazzi, Bettotti, Brusa, 2010 Phys. Rev. Lett. 104 243401
Permanence time of Ps in nano-channels before escaping into vacuum Ps energy spectra z0 tf tp <tm> = <tp> + <tf> tp = 18 ns
with the TOF apparatus at the intense positron source NEPOMUC at the FRMII reactor • Tunable nanochannels will allow to study: • Cooling and thermalization at temperature < 150 K • Cooling and thermalization in presence of decorated surfaces • Relations between diffusion and tortuosity
3. Ps spectroscopy p 3 Ps spectroscopy Positron source Positronaccumulator 1 T - 100 mK Anti-hydrogen production Transfer line AD SIDE 5 T - 4K trap Moirè Deflectometer /31
sample Detector ports Magneticfield terminator Buncher Valve Oursimulationtotransportpositronbunchfromaccumulatorto the target withdurationof 5 ns and a spot of 3 mm diameter !
3 Tilted CF16 Flange 45° Three tilted flange
continuum high n ~0.75 eV ~1650 nm n=3 6.05 eV 205 nm n=1 Planned experiments with Ps chamber FIRST GOAL: • Study of production efficiency of Ps in Rydberg state OTHER GOAL: • Rydberg state in presence of magnetic field • Motional stark effect • Ps laser cooling • Jump between different levels (microwave) METHOD: • Ps production and detection by PbF2 scintillator • Excitation up to n=3 • Excitation from n=3 to n>15
Summary • Our work isabout: • RunningAEgISpositronbunchedbeam • Ps production in AEgIS • Foundamentalstudies on Ps cooling • (TOF at FRMII-Munich) • Developmentof a newapparatusfor Ps spectroscopymeasurements
Preventivo 2013 • Missioni interne 3 k€ • Missioniestere 22 k€ + 8 k€ (sub iudice) • Materialediconsumo 4 k€ per materialedavuoto • Impiantiattrezzature 0 • Altreimmobilizzazioni 22 k€ • -8 k€ per 5 switch • -12 k€ per gruppopompaggio (Turbo, scroll, ionica) • -2 k€ per valvola