290 likes | 1.61k Views
SİNİR SİSTEMİ FİZYOLOJİSİ Yrd.Doç.Dr. Ercan ÖZDEMİR. Sinir Sistemi Fonksiyonları. Sinir sisteminin üç önemli fonksiyonu vardır : Duysal Re s ept örler ile iç ve dış çevrenin denetimi Bütünleşme, kaynaşma Sensoriyal bilgileri toplayıp bunları işleyerek uygun cevapların oluşturulması Motor
E N D
Sinir Sistemi Fonksiyonları • Sinir sisteminin üç önemli fonksiyonu vardır: • Duysal • Reseptörler ile iç ve dış çevrenin denetimi • Bütünleşme, kaynaşma • Sensoriyal bilgileri toplayıp bunları işleyerek uygun cevapların oluşturulması • Motor • Oluşan bu cevapların efektör sinyallerle uygun şekilde hedef organlara ulaştırılması
Sinir sistemi bölümleri • Merkezi sinir sistemi (CNS) • beyin • spinal kord
Sinir sistemi bölümleri • Periferik sinir sistemi (PNS): • Kranial ve spinal sinirler • Ganglionlar • Duysal reseptörler • Alt grupları: • Somatik • Otonomik • Motor komponent: • sempatik • parasempatik • Enterik
Sinir hücresi Hücre gövdesi Dendritler Aksonlar Nöronlar
Nöroglia Nöronlardan daha çok sayıda Nöronları çok çeşitli yönlerden destekler CNS nöroglia Nöroglia PNS nöroglia
İstirahat membran potansiyeli MP) • RMP nöronda –70 mV (range –40 mV to –90 mv). • Sonuçları: • Zarın her iki yanındaki iyon konsantrasyonları eşit şekilde dağılmaz. • Bunu sodyum ve potasyum pompaları sağlar
Dereceli potansiyeller • Dereceli potansiyel • Membran potansiyelinde lokal değişiklikler olur • Stimuluslara cevaplar farklılıklar gösterir. • Ateşleme eşik sını- • rına yaklaşılması depolarizasyon şeklinde, • Eşik değerden uzaklaşılması ise hiperpolarizasyon şeklinde kendini gösterir.
Aksiyon Potansiyel • Membranın geçirgenliği artar ve iyonların akımı sağlanır • Membranda voltaj değişikliği olur • Elektriksel sinyaller aksonlar boyunca yayılır • Nöronlar arasında voltaj farkı artar • Belirli nöronlar için bu süreç aynıdır.
Aksiyon potansiyel • 2 fazı vardır: • Depolarizasyon • graded potentials move toward firing threshold • if reach threshold voltage regulated sodium channels open • reversal of membrane permeability • Repolarizasyon • sodium channels close • potassium channels open
Aksonal iletim • Unmyelinated fibres • continuous conduction • Myelinated fibres • saltatory conduction • High density of voltage gated channels at Nodes of Ranvier • Larger diameter axons propagate impulses faster • Stimulus intensity encoded by: • frequency of impulse generation • number of sensory neurons activated
Clinical Note • Multiple Sclerosis • Caused by progressive destruction of myelin sheaths of CNS neurons • Usually appears between ages of 20 – 40 • Twice as common in females as males • Auto-immune disease • Immune system spearheads attack • Myelin sheaths deteriorate to scleroses (hardened scars or plaques) • Slows and short-circuits propagation of nerve impulses • Cause of disease unclear • Genetic and environmental components • Exposure to herpes virus? • No cure • Managed with beta-interferon • Reduces viral replication
Synapses • Synapse - functional junction between neurons or neuron and effector • Structure and function change with learning • Changes may allow signals to be transmitted or blocked • In neuron – neuron synapses • presynaptic neuron • post-synaptic neuron
Synapses • Electrical synapse • ions flow directly from one cell to another through gap junctions • fast communication • synchronisation
Synapses • Chemical synapse • presynaptic neuron releases neurotransmitter • elicits postsynaptic potential in postsynaptic neuron • Excitatory (EPSP) • depolarises postsynaptic membrane bringing closer to firing threshold. • Inhibitory (IPSP) • hyperpolarises postsynaptic membrane moving further from firing threshold • Postsynaptic neuron integrates excitatory and inhibitory inputs and responds accordingly • Spatial summation • Temporal summation
Neural circuits • Divergence • Single presynaptic neuron synapses with several postsynaptic neurons • Example: sensory signals spread in diverging circuits to several regions of the brain • Convergence • Several presynaptic neurons synpase with single postsynaptic neuron • Example: single motor neuron synapsing with skeletal muscle fibre receives input from several pathways originating in different brain regions
Neural circuits • Reverberating circuit • Once presynaptic cell stimulated causes postsynaptic cell to transmit a series of impulses • Example: coordinated muscular activity • Parallel after-discharge circuit • Single presynaptic neuron synapses with multiple neurons which synapse with single postsynaptic cell • results in final neuron exhibiting multiple postsynaptic potentials • Example: may be involved in precise activities (eg mathematical calculations)
Regeneration and repair of nervous tissue • Neruons exhibit plasticity: • New dendrites • New proteins • New synaptic contacts • Limited capacity to regenerate • PNS • Damage to dendrites and myelinated axons possible if: • cell body intact • Schwann cells (myelin producing) remain active • CNS • Little or no repair of damage to neurons
Central Nervous System • Neurogenesis • Birth of new neurons from undifferentiated stem cells occurs in hippocampus (area of brain involved in learning) • Nearly complete lack of neurogenesis in other parts of CNS, due to: • Inhibitory influences from neuroglia (particularly oligodendrocytes) • Absence of growth promoting signals that were present during fetal development • CNS injury • Injury of brain or spinal cord usually permanent • Following axonal damage nearby astrocytes proliferate rapidly forming scar tissue • Physical barrier to regeneration
Peripheral Nervous System • Axons and dendrites of PNS may repair if: • Associated with a neurolemma • most PNS cell processes covered with a neurolemma • Cell body intact • Schwann cells functional • Form neurolemma • Scar tissue does not form too rapidly
Peripheral Nervous System • 24-28 hours after injury to neuron: • Nissl bodies (clusters of rough ER) break up into granular masses (chromatolysis) • 72-90 hours post-injury: • Part of axon distal to injury undergoes Wallerian degeneration • axon swells and breaks up into fragments • myelin sheath deteriorates • Macrophages then phagocytose debris • Later on: • Synthesis of RNA and protein accelerates • Schwann cells undergo mitosis and form regeneration tube across injured area • Guides growth of new axon • Eventually forms new myelin sheath