570 likes | 678 Views
Essential Statistics in Biology: Getting the Numbers Right. Raphael Gottardo Clinical Research Institute of Montreal (IRCM) raphael.gottardo@ircm.qc.ca http://www.rglab.org. Outline. Exploratory Data Analysis 1-2 sample t -tests, multiple testing Clustering SVD/PCA
E N D
Essential Statistics in Biology: Getting the Numbers Right • Raphael Gottardo • Clinical Research Institute of Montreal (IRCM) • raphael.gottardo@ircm.qc.ca • http://www.rglab.org
Outline • Exploratory Data Analysis • 1-2 sample t-tests, multiple testing • Clustering • SVD/PCA • Frequentists vs. Bayesians 2 Day 1
Outline • What is SVD? Mathematical definition • Relation to Principal Component Analysis (PCA) • Applications of PCA and SVD • Illustration with gene expression data 4 Day 1 - Section 4
SVD Let X be a matrix of size mxn (m≥n) and rank r≤n then we can decompose X as n n n n X U S V x x = T m m n n - U is the matrix of left singular vectors - V is the matrix of right singular vectors - S is a diagonal matrix who’s diagonal are the singular values 5 Day 1 - Section 4
SVD Let X be a matrix of size mxn (m≥n) and rank r≤n then we can decompose X as n n n n X U S V x x = T m m n n 6 Day 1 - Section 4
SVD Let X be a matrix of size mxn (m≥n) and rank r≤n then we can decompose X as n n n n X U S V x x = T m m n n Direction Amplitude 7 Day 1 - Section 4
Relation to PCA New variables Variance Assume that the rows of X are centered then is (up to a constant) the empirical covariance matrix and SVD is equivalent to PCA The rows of V are the singular vectors or principal components Gene expression: Eigengenes or eigenassays 8 Day 1 - Section 4
Applications of SVD and PCA • Dimension reduction (simplify a dataset) • Clustering • Discriminant analysis • Exploratory data analysis tool • Find the most important signal in data • 2D projections 9 Day 1 - Section 4
Toy example s=(13.47,1.45) set.seed(100) x1<-rnorm(100,0,1) y1<-rnorm(100,1,1) var0.5<-matrix(c(1,-.5,-.5,.1),2,2) data1<-t(var0.5%*%t(cbind(x1,y1))) set.seed(100) x2<-rnorm(100,2,1) y2<-rnorm(100,2,1) var0.5<-matrix(c(1,.5,.5,1),2,2) data2<-t(var0.5%*%t(cbind(x2,y2))) data<-rbind(data1,data2) svd1<-svd(data1) plot(data1,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd1$v[2,1]/svd1$v[1,1]),col=2) abline(coef=c(0,svd1$v[2,2]/svd1$v[1,2]),col=3) 10 Day 1 - Section 4
Toy example s=(47.79,13.25) svd2<-svd(data2) plot(data2,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd2$v[2,1]/svd2$v[1,1]),col=2) abline(coef=c(0,svd2$v[2,2]/svd2$v[1,2]),col=3) svd<-svd(data) plot(data,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd$v[2,1]/svd$v[1,1]),col=2) abline(coef=c(0,svd$v[2,2]/svd$v[1,2]),col=3) 11 Day 1 - Section 4
Toy example ### Projection data.proj<-svd$u%*%diag(svd$d) svd.proj<-svd(data.proj) plot(data.proj,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd.proj$v[2,1]/svd.proj$v[1,1]),col=2) ### svd.proj$v[1,2]=0 abline(v=0,col=3) 12 Day 1 - Section 4
Toy example s=(47.17,11.88) Projected data New coordinates 13 Day 1 - Section 4
Toy example ### New data set.seed(100) x1<-rnorm(100,-1,1) y1<-rnorm(100,1,1) var0.5<-matrix(c(1,-.5,-.5,1),2,2) data1<-t(var0.5%*%t(cbind(x1,y1))) set.seed(100) x2<-rnorm(100,1,1) y2<-rnorm(100,1,1) var0.5<-matrix(c(1,.5,.5,1),2,2) data2<-t(var0.5%*%t(cbind(x2,y2))) data<-rbind(data1,data2) svd1<-svd(data1) plot(data1,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd1$v[2,1]/svd1$v[1,1]),col=2) abline(coef=c(0,svd1$v[2,2]/svd1$v[1,2]),col=3) svd2<-svd(data2) plot(data2,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd2$v[2,1]/svd2$v[1,1]),col=2) abline(coef=c(0,svd2$v[2,2]/svd2$v[1,2]),col=3) svd<-svd(data) plot(data,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6)) abline(coef=c(0,svd$v[2,1]/svd$v[1,1]),col=2) abline(coef=c(0,svd$v[2,2]/svd$v[1,2]),col=3) 14 Day 1 - Section 4
Toy example s=(26.48,24.98) 15 Day 1 - Section 4
Application to microarrays • Dimension reduction (simplify a dataset) • Clustering (two many samples) • Discriminant analysis (find a group of genes) • Exploratory data analysis tool • Find the most important signal in data • 2D projections (clusters?) 16 Day 1 - Section 4
Application to microarrays Cho cell cycle data set 384 genes We have standardized the data cho.data<-as.matrix(read.table("logcho_237_4class.txt",skip=1)[,3:19]) cho.mean<-apply(cho.data,1,"mean")cho.sd<-apply(cho.data,1,"sd")cho.data.std<-(cho.data-cho.mean)/cho.sd svd.cho<-svd(cho.data.std) ### Contribution of each PC barplot(svd.cho$d/sum(svd.cho$d),col=heat.colors(17)) ### First three singular vectors (PCA) plot(svd.cho$v[,1],xlab="time",ylab="Expression profile",type="b") plot(svd.cho$v[,2],xlab="time",ylab="Expression profile",type="b") plot(svd.cho$v[,3],xlab="time",ylab="Expression profile",type="b") ### Projection plot(svd.cho$u[,1]*svd.cho$d[1],svd.cho$u[,2]*svd.cho$d[2],xlab="PCA 1 ",ylab="PCA 2") plot(svd.cho$u[,1]*svd.cho$d[1],svd.cho$u[,3]*svd.cho$d[3],xlab="PCA 1 ",ylab="PCA 3") plot(svd.cho$u[,2]*svd.cho$d[2],svd.cho$u[,3]*svd.cho$d[3],xlab="PCA 2 ",ylab="PCA 3") ### Select a cluster ind<-(svd.cho$u[,2]*svd.cho$d[2])^2+(svd.cho$u[,3]*svd.cho$d[3])^2>5 & svd.cho$u[,2]*svd.cho$d[2]>0 & svd.cho$u[,3]*svd.cho$d[3]<0 plot(svd.cho$u[,2]*svd.cho$d[2],svd.cho$u[,3]*svd.cho$d[3],xlab="PCA 2 ",ylab="PCA 3") points(svd.cho$u[ind,2]*svd.cho$d[2],svd.cho$u[ind,3]*svd.cho$d[3],col=2) matplot(t(cho.data.std[ind,]),xlab="time",ylab="Expression profiles",type="l") 17 Day 1 - Section 4
Application to microarrays Main contribution Relative contribution Why? Singular values 18 Day 1 - Section 4
Application to microarrays PC1 19 Day 1 - Section 4
Application to microarrays PC2 20 Day 1 - Section 4
Application to microarrays PC3 21 Day 1 - Section 4
Application to microarrays Projection onto PC1 PC2 22 Day 1 - Section 4
Application to microarrays Projection onto PC1 PC3 23 Day 1 - Section 4
Application to microarrays Projection onto PC2 PC3 24 Day 1 - Section 4
Application to microarrays Projection onto PC2 PC3 24 genes 25 Day 1 - Section 4
Application to microarrays Projection onto PC2 PC3 24 genes 26 Day 1 - Section 4
Conclusion • SVD is a powerful tool • Can be very useful in gene expression data • SVD of genes (eigen-genes) • SVD of samples (eigen-assays) • Mostly an EDA tool 27 Day 1 - Section 4
Overview of Statistics inference: Bayes vs. Frequentists(If time permits)
Introduction • Parametric statistical model • Observation are drawn from a probability distribution where is the parameter vector Likelihood function → (Inverted density) 29 Day 1 - Section 5
Introduction • Parametric statistical model • Observation are drawn from a probability distribution where is the parameter vector Likelihood function → (Inverted density) 30 Day 1 - Section 5
Introduction Normal distribution Probability distribution for one observation is If independence 31 Day 1 - Section 5
Introduction 15 observations N(1,1) 32 Day 1 - Section 5
Introduction 15 observations N(1,1) True probability distribution 33 Day 1 - Section 5
Inference • The parameters are unknown • “Learn” something about the parameter vector θfrom the data • Make inference about θ • Estimate θ • Confidence region • Test an hypothesis(θ=0) 34 Day 1 - Section 5
The frequentist approach • The parameters are fixed but unknown • Inference is based on the relative frequency of occurrence when repeating the experiment • For example, one can look at the variance of an estimator to evaluate its efficiency 35 Day 1 - Section 5
The Normal Example: Estimation Normal distribution is the mean and is the variance (Sample mean and sample variance) Numerical example, 15 obs. from N(1,1) Use the theory of repeated samples to evaluate the estimators. 36 Day 1 - Section 5
For example we know that is normal with mean and variance . The standard deviation of an estimator is called the standard error. The Normal Example: Estimation In our toy example, the data are normal, and we can derive the sampling distribution of the estimators. What if we can’t derive the sampling distribution? Use the bootstrap! 37 Day 1 - Section 5
The Bootstrap - Basic idea is to resample the data we have observed and compute a new value of the statistic/estimator for each resampled data set. - Then one can assess the estimator by looking at the empirical distribution across the resampled data sets. set.seed(100) x<-rnorm(15) mu.hat<-mean(x) sigma.hat<-sd(x) B<-100 mu.hatNew<-rep(0,B) for(i in 1:B) { x.new<-sample(x,replace=TRUE) mu.hatNew[i]<-mean(x.new) } se<-sd(mu.hatNew) set.seed(100) x<-rnorm(15) mu.hat<-mean(x) sigma.hat<-sd(x) B<-100 mu.hatNew<-rep(0,B) for(i in 1:B) { x.new<-sample(x,replace=TRUE) mu.hatNew[i]<-median(x.new) } se<-sd(mu.hatNew) 38 Day 1 - Section 5
The Normal Example: CI Confidence interval for the mean : where and usually depends on n but when n is large Numerical example, 15 obs. from N(1,1) What does this mean? > set.seed(100) > x<-rnorm(15) > t.test(x,mean=0) One Sample t-test data: x t = 0.3487, df = 14, p-value = 0.7325 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -0.2294725 0.3185625 sample estimates: mean of x 0.044545 set.seed(100) x<-rnorm(15) t.test(x,mean=0) 39 Day 1 - Section 5
The Normal Example:Testing Test an hypothesis about the mean: t-test If , t follows a t-distribution with n-1 degrees of freedom p-value 40 Day 1 - Section 5
The Bayesian Approach • Parametric statistical model • Observation are drawn from a probability distribution where is the parameter vector ● The parameters are unknown but random ● Theuncertainty on the vector parameter is model through a prior distribution 41 Day 1 - Section 5
The Bayesian Approach A Bayesian statistical model is made of 1. A parametric statistical model 2. A prior distribution Q: How can we combine the two? A: Bayes Theorem! 42 Day 1 - Section 5
The Bayesian Approach Bayes theorem ↔ Inversion of probability If A and E are events such that P(E)≠0 and P(A)≠0 then P(A|E) and P(E|A) are related by 43 Day 1 - Section 5
The Bayesian Approach From prior to posterior: Prior information Information on θ contained in the observation y Normalizing constant 44 Day 1 - Section 5
The Bayesian Approach Sequential nature of Bayes’ theorem: The posterior is the new prior! 45 Day 1 - Section 5
The Bayesian Approach Justifications: • Actualization of the information about θ by extracting the information about θ from the data • Condition upon the observations (Likelihood principle) • Avoids averaging over the unobserved values of y • Provide a complete unified inferential scope 46 Day 1 - Section 5
The Bayesian Approach Practical aspect: • Calculation of the normalizing constant can be difficult • Conjugate priors (exact calculation is possible) • Markov chain Monte Carlo 47 Day 1 - Section 5
The Bayesian Approach Conjugate priors: Example: Normal mean, one observation + → and 48 Day 1 - Section 5
The Bayesian Approach Conjugate priors: Example: Normal mean, n observations + → Shrinkage and 49 Day 1 - Section 5
Introduction 15 observations N(1,1) Standardized likelihood 50 Day 1 - Section 5