420 likes | 523 Views
El costo del status quo: Valoración económica del costo social de la contaminación atmosférica en ciudades latinoamericanas. Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering P. Universidad Católica de Chile.
E N D
El costo del status quo:Valoración económica del costo social de la contaminación atmosférica en ciudades latinoamericanas Luis A. Cifuentes Center for the Environment and Industrial Engineering DeptSchool of Engineering P. Universidad Católica de Chile Sesión 3: Política Fiscal y Medio Ambiente CEPAL, Santiago de Chile, 31 de enero de 2007
Contenido • Introducción a la valoración económica de los impactos de la contaminación atmosférica • Método de la función de daño • Requerimientos de Información - Aplicabilidad en países en desarrollo • Valoración económica del impacto por contaminación aérea en ciudades latinoamericanas. • Estimación de la perdida económica y de bienestar resultante de los actuales niveles de contaminación en 39 ciudades la Latinoamérica • Costos en salud evitados en Santiago de Chile debido al proceso de descontaminación iniciado en 1990. • Costos económicos evitados por el Plan de Descontaminación • Comparación con Costo de las medidas de reducción de emisiones
Introducción a la valoración económica de los impactos de la contaminación atmosférica • Fundamentos • Método de la función de daño • Requerimientos de Información
Efectos de la contaminación atmosférica • Efectos en la salud de la población • Efectos en vegetacion y cultivos • Efectos en materiales • Efectos estéticos (visibilidad)
Efectos en Materiales German Ornamental Figure, 1908 (left) and 1968 (right), Herten Castle, Germany. Source: Westfalisches Amt Fur denkmalpflege, Munster)
Efectos en vegetación Daño a bosques en Alemania Baja de productividad de cosechas
Efectos en Salud… La primera pregunta que nos debemos hacer es: ¿puede la contaminación atmosférica tener un impacto negativo en la salud de la población?
Londres, Invierno 1953Mortalidad Semanal vs. Concentraciones de SO2 Fuente: Bell, M. L. and D. L. Davis (2001). “Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution.” Environ Health Perspect109 Suppl 3: 389-94.
SO4 and mortality rates in USA in 1980 Source: Ozkaynak, H. and G. D. Thurston (1987). “Associations Between 1980 U.S. Mortality Rates and Alternative Measures of Airborne Particle Concentration.” Risk Analysis7(4): 449-461. SO2 NAAQS Annual Avg: 80 ug/m3
Long term study: Pope et al, 2002 • DESIGN, SETTING, AND PARTICIPANTS • Vital status and cause of death data collected by the American Cancer Society as part of the Cancer Prevention II study, for 1.2 million adults in 1982. • Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). • The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998 • RESULTS: • Fine particulate and sulfur oxide--related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. • Each 10-ug/m3 of PM2.5 associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. • Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. • CONCLUSION: • Long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality.
Chronic Effects: All Cause Mortality Source: Pope III, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston (2002). “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.” Jama287(9): 1132-41. PM2.5 NAAQS Annual Avg: 15 ug/m3
25 30 35 40 45 50 Chronic Effects: All Cause MortalityExtrapolation to Santiago Source: Pope III, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston (2002). “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.” Jama287(9): 1132-41. Santiago Promedio 1989-2001 Santiago 2001 Promedio Anual de PM2.5 [ug/m3] Rango de estudio en EE.UU
Requerimientos de Informacion • Modelo de calidad del aire • Monitoreo ambiental • Inventarios de emisiones • Impacto en salud • Demografía • Estadísticas de salud de la población • Funciones Concentración-Respuesta • Valoración de los efectos • Costos médicos • Costos de productividad Perdida • Disposición a pagar • Integración de los resultados
Valoración económica del impacto por contaminación aérea en ciudades latinoamericanas. Estimación de la perdida económica y de bienestar resultante de los actuales niveles de contaminación en 40 ciudades la Latinoamérica (Trabajo realizado para el BID: Cifuentes, L. A., A. Krupnick, R. O'Ryan and M. Toman(2005). Urban Air Quality And Human Health In Latin America And The Caribbean. Washington, DC., Interamerican Development Bank. Disponible en http://www.iadb.org/sds/ENV/publication/publication_2492_4240_e.htm
Epidemiologic studies of air pollution and health effects in Latin America and the Caribbean. Source: An Assessment of Health Effects of Ambient Air Pollution in Latin America and the Caribbean,Working Draft, November 2004, Area of Sustainable Development and Environmental Health, Pan American Health Organization, World Health Organization • Effects studied include • Premature Mortality • Hospital admissions • Emergency Room Visits • Child Medical Visits
Valuation of the Health Effects There are three components of the social value assigned to each health effect avoided: 1. Medical treatment: costs of the actual effect (for example, the cost of a visit to the emergency room) 2. Lost Productivity : the value of the labor lost due to the incidence of the health effect (e.g., while in the hospital and while recovering, work is missed) 3. Disutility: the direct welfare loss associated to the health effects (e.g the nuisance of experience an asthma attack) The first two components can be estimated directly, and are referred to as the Cost of Illness (COI) For disutility values, the method of choice is Contingent Valuation. There are very few CV studies in LAC.
Transference of Unit Values • If not local values are available, they can be transferred from other countries, using ratio of per-capita income: • Income elasticity: can vary from 0.4 to 1. If 0.4, values are less sensitive to income differences. • Purchase Power Parity (PPP) can also be used. The difference between countries will be smaller.
Values used • For this work, we considered medical costs values from Mexico and Chile, and Willingness to Pay values from Chile transferred to all countries. • We also used willingness to pay values from the USA transferred to all countries. • There is a big difference of the two source of values: For example, the Value of a Statistical Life (VOSL) from the Chilean study is $634 thousand, while the VOSL from the USA studies in $6.3 million.
Medical Unit Costs(US$ per case) • Medical costs were transferred to other cities using the ratio of GNP in PPP terms
Ambient Pollutant Concentrations • Data for 39 LAC cities was gathered from different sources: state-run monitoring networks, research monitors, etc. • The quality of data was an issue: we separated the ‘good’ quality cities from the not so good, or unknown quality. • Analyses scenarios: We analyzed two control scenarios: • C1: a uniform 10% reduction in actual levels • C2: the attainment of a 50 ug/m3 reference level (this level is similar to many countries annual standards. New WHO guidelines are 40–20 ug/m3)
Benefits as % of income for a 10% reduction in PM10 levels A 10% reduction in PM10 levels results in considerable benefits as % of income. The differences stem from different actual levels, and from mortality rates.
Summary • This analysis shows that there is a significant benefit to be accrued if ambient concentrations of PM are reduced, i.e. there is a significant damage being done now! • Although the biggest figures are for lost of welfare (expressed as willingness to pay measures), the cost of illness figures are important • For the scenario in which the annual PM standars are met, the benefits amount to up tp 83 US$/person per year (For Santiago, is 49 US/person, for Ciudad Juarez, Mexico, 97 US$/person). These are significant numbers.
Costos en salud evitados en Santiago de Chile debido al proceso de descontaminación iniciado en 1990. • Costos económicos evitados por el Plan de Descontaminación • Comparación con Costo de las medidas de reducción de emisiones
Puntos Principales • Monitoreo de PM2.5 permite centrarse en la fraccion fina del material particulado, que es la mas peligrosa. • Estudios epidemiológicos realizados en Santiago brindan una mayor confianza a los resultados, y ayudan a sobreponerse al síndrome ‘esto no le ocurre a nuestra población’ • Datos detallados de atenciones de salud nos permiten asignar los costos a los diferentes agentes: estado, población, sector privado • Desarrollo de inventarios de emisiones permite, en forma aproximada, estimar el impacto de reducciones en emisiones en la calidad ambiental, y por ende, cuantificar los beneficios de estas reducciones, y realizar un análisis costo beneficio para las medidas de mitigación.
Mortalidad Diaria según Tamaño de Partícula Fuente: Cifuentes, L., J. Vega, K. Kopfer and L. Lave (2000). “Effect of the fine fraction of particulate matter vs the coarse mass and other pollutants on daily mortality in Santiago, Chile.” Journal of the Air & Waste Management Association 50(August): 1287-1298.
Excess effects in Santiago for year 2000 Effects computed for the whole population in Santiago, 4.8M people, for a change in PM2.5 concentrations from the current 35.1 ug/m3 to a reference level of 15 ug/m3 (the US standard). Chronic effects computed for a change from 52.5 to 15 ug/m2 of the long term average concentrations.
Quien recibe los beneficios? • Usando la adscripción de la población a los diferentes sistemas de salud (publico, privado e independientes), y su empleador (que es responsable del pago de las licencias medicas), pudimos asignar los beneficios a cada sector:
Benefits for the 1997 Santiago Decontamination Plan • In 1997 a Atmospheric Decontamination and Prevention Plan (PPDA) was signed into law. • The Plan The Plan calls for a gradual reductions in AP concentrations, aiming to comply with the current Chilean PM10 and ozone standards in a 15 year time frame. • The baseline conditions assume an increase in concentrations due to increase in population and in economic conditions
Number of cases avoided by the Decontamination Plan • Total number of cases accrued from 1997 to 2011, if the reduction in concentrations is achieved.
Beneficios en Salud del PPDA 1997-2011(Mill. US$ de 2000) Millones de dólares del 2000
Razón Beneficio/Costo para medidas de reducción • Razón calculada como el Valor Presente de los beneficios sobre el valor presente de los costos, durante toda la vida útil de la medida, usando una tasa de descuento social del 12%. Beneficios bajos calculados considerando solo muertes de corta exposición. Beneficios altos incluye muertes debido a exposición prolongada. • El beneficio incluye el beneficio de las reducciones de PM2.5 y de ozono. No se han valorado las reducciones de CO2.