1 / 12

Preprocessing dan Features Extraction

Preprocessing dan Features Extraction. Pengertian. Preprocessing adalah proses pengolahan data asli sebelum data tsb diolah dgn JST. Tujuan preprocessing , diantaranya : Menghilangkan noise Memperjelas features (fitur) data Memperkecil / memperbesar ukuran data

summer
Download Presentation

Preprocessing dan Features Extraction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PreprocessingdanFeatures Extraction

  2. Pengertian • Preprocessing adalah proses pengolahan data asli sebelum data tsb diolah dgn JST. • Tujuan preprocessing, diantaranya: • Menghilangkan noise • Memperjelas features (fitur) data • Memperkecil / memperbesar ukuran data • Mengkonversi data asli agar diperoleh data yg sesuai kebutuhan

  3. Contoh preprocessing • Mengubah citra RGB  gray-scale • Binerisasi citra • Croping citra • Resize citra • Edge detection / edge enhancement • Thinning

  4. Keuntungan preprocessing • Data lebih siap diolah dgn JST • Data sesuai dengan kebutuhan JST, misalnya pada proses binerisasi dan bipolarisasi • Fitur data lebih jelas

  5. Kerugian preprossesing • Perlu tambahan waktu komputasi, shg pengolahan data secara keseluruhan lebih lama • Algoritma preprocessing kadang-kadang menghilangkan informasi penting

  6. Features Extraction • Features extraction adalah proses pengambilan ciri-ciri yg unik dari data yg akan diolah. • Tujuan feature extraction diantaranya: • Memperkecil jumlah data • Mengambil informasi yg terpenting dari data yg diolah • Mempertinggi presisi pengolahan

  7. Contoh features extraction • Edge detection / edge enhancement • Separasi / pemisahan warna • Pencarian nilai-nilai ekstrim (tertinggi atau terendah) • Penghitungan banyaknya sudut

  8. Contoh enhancement

  9. Contoh Thinning

  10. Contoh Feature Extraction Gambar asli Gambar gray-scale

  11. Contoh Feature Extraction 00100 01100 00100 00100 00100 00100 00100 01110 Gambar biner

  12. Catatan • Preprocessing harus disesuaikan dgn kebutuhan data • Features extraction memerlukan kreatifitas dan kecermatan peneliti • Obyek yg sama dapat diambil fitur-fitur yg berbeda

More Related