1 / 19

TURF Breathing new life into an old technique

TURF Breathing new life into an old technique. Ray Poynter Director, Virtual Surveys. A typical research problem. Gelati & Sons make ice cream In a typical store they sell 8 flavours and they have lots of data about how well they sell They have a new contract to supply a national supermarket

sundari
Download Presentation

TURF Breathing new life into an old technique

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TURFBreathing new life into an old technique Ray Poynter Director, Virtual Surveys

  2. A typical research problem • Gelati & Sons make ice cream • In a typical store they sell 8 flavours and they have lots of data about how well they sell • They have a new contract to supply a national supermarket • But they are only allowed to offer 4 flavours • Which flavours? • The simple answer? • The best selling 4 • The research answer • TURF – Total Unduplicated Reach and Frequency

  3. TURF – a bit of background • Dates back to the late 80s • Many research companies offer it in their toolkit • Only a handful of papers over the last 20 years • Rarely used these days • BUT • With a dusting of Internet-based data collection • And exposure to Excel-based modelling • A powerful tool for portfolio management

  4. R2 1 1 0 R3 1 1 0 R4 1 0 0 Customers 4 Almond + Banana = 4 happy customers (total unduplicated reach = 4) Almond + Coffee = 5 happy customers (total unduplicated reach = 5) Why TURF? • Consider the matrix below, with 3 flavours • The data shows whether a flavour is bought by each respondent Almond Banana Coffee R1 1 1 1 R5 0 0 1 3 2

  5. Gelati & Sons There are 70 different ways to choose 4 flavours from these 8, which 4 maximise the reach?

  6. Solver • Excel Add-in • Check you have the Solver Add-In enabled • Choose a cell to maximise • The Reach value in our case • Create constraints • Each flavour is either in or out (integer values in the range 0 to 1) • The number of flavours must equal the number requested • Solver will then search for the best solution

  7. Number of flavours wanted Reach achieved, the value maximised Solver adjusts these values constraining them to be 0 or 1 Constrains the number of 1s, to number wanted Solver example 1

  8. Different scenarios Sub-samples can easily be set up: Either as sample selections Or, as separate Excel pages, one per key sub-sample

  9. Gelati & Sons • Almond Ice Cream • €2.95 • How likely are you to buy this ice cream some of the time? • Definitely buy • Probably buy • May or may not buy • Probably won’t buy • Definitely won’t buy • Gelati & Sons • Almond Ice Cream • €2.95 • How often will you probably buy this ice cream? • 5-7 times a week • 2-4 times a week • Once a week • 2-3 times a month • Once a month • Every 2-3 months • Less often Simple to Collect • Each respondent sees all the scenarios, randomised If definitely or probably buy

  10. Frequency, that’s why it’s not TUR • Only people who are going to buy the product have a frequency greater than 0 • Definitely buys have a frequency • Probably buys have a frequency only if you are counting probably buy as people who are buying • Frequencies need converting to a common base • In our example we might use the values as purchases per year • Frequencies may need re-scaling • Ideally using calibration data or norms • Rough rule of thumb • Square root of definite buy frequencies • Cube root of probably buy frequencies

  11. Choice and Frequency • The questions were monadic • So, what do we do if we have a respondent who says • If Almond is offered I will buy 4 per year • If Banana is offered I will buy 12 per year • If we offer him Almond and Banana? • If the products are comparable? • As in this example • Usually safe to assume he/she will buy 12 products • Some unknown mixture of Almond and Banana • If necessary, keep the ratios, e.g. Almond 3, Banana 9 • If the products are not substitutable? • e.g. some last longer, or are twice as big • Then more complex assumptions have to be used

  12. p.a. Almond Banana Coffee Almond & Banana Almond & Coffee Banana & Coffee R1 5 15 8 15 8 15 R2 4 12 0 12 4 12 R3 3 8 0 8 3 8 R4 3 0 0 3 3 0 R5 0 0 7 0 7 7 38 25 42 Simple example, re-visited • Almond has more people who would buy, but they would buy less • Almond & Coffee meets everyone’s needs, but with the lowest frequency • Banana & Coffee has the highest predicted frequency

  13. Value to maximise Solving for Frequency The system can be set up to report reach as well as frequency, along with sub-groups etc.

  14. Frequency solutions

  15. Improving the interface • By using customised VBA and Solver a more complete solution includes: • Selection of sub-groups • Dynamically switching between Definite Buys only and Definite plus Probably Buy • Stepwise solution of 1 to N products, reporting reach, frequency, cumulative reach and cumulative frequency • Dynamically switching between Reach and Frequency • Ability to temporarily exclude products • Ability to force specific products • Ability to weight key sub-groups, e.g. to make it much more likely that longstanding customers will have a product they definitely like

  16. The client experience • Whilst traditional TURF approaches provide useful insight, it has often been static and dull • What-if modelling allows the client to really understand the dynamics • Extensions include: • Adding Value weights to the products • Forcing specific items to be selected • Asking for the next best solution • Identifying the disenfranchised • Modifying the rules so a solution that finds 2 products for each respondent • Multiple ranges, e.g. in chilled food the best ranges of Indian, Chinese, Mexican, and Italian

  17. Definites versus Probables • Should the analysis be based on Probably Buy or on both Probably and Definitely Buy? • Cases vary but: • Which option is closest to sales data? • Try it both ways, see what the difference is • If you are getting enough definites use these • If you are using frequency then either use only definites or down weight the probably frequencies

  18. Key TURF Questions • Why isn’t TURF used more? • Perhaps because it is a specific tool for a specific problem and is not readily converted into a general tool • How might technology impact TURF? • HB might remove the need for each respondent to evaluate all the scenarios • When is TURF applicable? • Flavours • Products in a vending machine • Travel and ticket options • Pack and size variants (with care) • Courses (including conferences) • Menus and bundles

  19. Thank you Questions?

More Related