1 / 10

Electrical Communications Systems 0909.331.01 Spring 2005

This lecture explores angle modulation systems, including phase and frequency modulation. It covers signal representation, complex envelope, time domain representation, terminology, phase sensitivity, frequency deviation, and instantaneous frequency.

susannaw
Download Presentation

Electrical Communications Systems 0909.331.01 Spring 2005

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electrical Communications Systems0909.331.01Spring 2005 Lecture 8aMarch 29, 2005 Shreekanth Mandayam ECE Department Rowan University http://engineering.rowan.edu/~shreek/spring05/ecomms/

  2. Plan • Angle Modulation Systems • Definitions - Phase and Frequency Modulation • Complex Envelope • Time Domain • Analyzing FM Signals - Battle Plan!!!! • Single-tone FM • Bessel Functions

  3. ECOMMS: Topics

  4. Angle Modulation Systems • Signal Representation • Complex Envelope • Time Domain Representation • Terminology • Phase Sensitivity • Frequency Deviation • Instantaneous Frequency • Phase & Frequency Modulation Indices Phase Modulation (PM) Frequency Modulation(FM) Instrument Demo Matlab Demo: anglemod.m

  5. Signals Systems • Time Domain • Complex Envelope • Spectrum • Single-tone FM • Narrowband FM • Wideband FM • Bessel Functions • Power Performance Transmitters Receivers Standards Modulation Index Efficiency Bandwidth Noise Analyzing FM Signals - Battle Plan!!! Instrument Demo

  6. Bessel’s Differential Equation • German mathematician and astronomer Friedrich Wilhelm Bessel (1784 - 1846) • Discovered this equation while investigating planetary motion • 2nd order ODE, Nonlinear, Variable Coefficients, Homogeneous • Very important in applied mathematics and engineering • Governing equation for problems with cylindrical geometries, e.g. waveguides, vibrating strings, and …………!!!!!!!

  7. Bessel Functions Matlab Demo » help besselj BESSELJ Bessel function of the first kind. J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).The order NU need not be an integer, but must be real.The argument Z can be complex. The result is real where Z is positive. » » » » x=0:0.1:10; » plot(x,besselj(0,x)); » title('Bessel Function of Order Zero, J_0(x)'); » xlabel('x'); »

  8. Bessel Functions Matlab Demo %ECOMMS Spring 00 Classroom Demo %S. Mandayam, ECE, Rowan University clear;close all; n=0:6; beta=0:0.1:10; Jn=besselj(n,beta'); plot(beta',Jn); grid on; xlabel('Frequency Modulation Index: \beta'); ylabel('J_n(\beta)'); legend('J_0(\beta)','J_1(\beta)','J_2(\beta)', 'J_3(\beta)','J_4(\beta)','J_5(\beta)','J_6(\beta)'); title('J_n(\beta): Spectral Amplitudes of an FM signal at f_c \pm nf_m'); http://engineering.rowan.edu/~shreek/spring05/ecomms/demos/besselfun.m Instrument Demo

  9. J1(b) |S(f)| / (Ac/2) J2(b) J3(b) J0(b) 0fc-3fm fc-2fm fc-fm fc fc+fm fc+2fm fc+3fm f FM Signal & Spectrum Single-tone FM Signal Single-tone FM Spectrum

  10. Summary

More Related