210 likes | 501 Views
A face analysis exemplar : Face detection, landmarking and facial expression recognition. Dr . Brais Martinez. Slides can be downloaded from braismartinez.com. Overview. Model-free part-based tracking. Part-based facial landmarking. Face Analysis. PostDoc. PhD. End 2010.
E N D
A face analysis exemplar: Face detection, landmarking and facial expression recognition. Dr.Brais Martinez Slides can be downloaded from braismartinez.com
Overview Model-free part-based tracking Part-based facial landmarking Face Analysis PostDoc PhD End 2010 • Research visits to: • Imperial College London (MajaPantic) • 9/2007-3/2008 • Oregon State University (SinisaTodorovic) • 7/2013-10/2013
Overview Multi-view face detection Facial Landmarking Facial Action Unit Detection [Under Review] IVC. J. Orozco, B. Martinez, M. Pantic, “Empirical analysis of cascade deformable models for multi-view face detection” [IF 2012: 1.96, Q1] 2010 CVPR - M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial point detection using boosted regression and graph models” 2013 TPAMI - B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local evidence aggregation in regression-based facial point detection” [Under Review] CVIU - B. Martinez, M. Pantic, “Facial landmarkingfor in-the-wild images with local inference based on global appearance” 2014 TSMCB - B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling” [Under Review] IJCV - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic analysis of facial actions: A survey” [Under Review] ICPR - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision level fusion of domain specific regions for facial action recognition” 2014TSMCB - B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling” [Under Review] IJCV - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic Analysis of Facial Actions: A Survey” [Under Review] ICPR - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision Level Fusion of Domain Specific Regions for Facial Action Recognition” 2010CVPR - M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial Point Detection using Boosted Regression and Graph Models” 2013TPAMI - B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local Evidence Aggregation in Regression-based Facial Point Detection” [Under Review] CVIU - B. Martinez, M. Pantic, “Facial landmarking for in-the-wild images with local inference based on global appearance”
Face detection using cascaded DPM Part-based model • The Deformable Parts Model (DPM): • Object composed of parts • Current state-of-the-art model in object detection • Weakly-supervised • Uses Linear SVM (we used 35k+ training images!) • Very efficient implementations (both training and testing) Convolve filter with gradient im. object loc. parts loc. Penalise deformations
Cascaded DPM Non-frontal poses: Mixture model Speed: cascaded search Full score Root Filter Part Filters Part Locations Score 1 part > No Score 2 parts Scale: Multi-scale sliding window > No
Results: DPM face detection Dataset: AFLW True Positive Rate Proposed Zhu&Ramanan Multiview V&J False Positive Rate • Advantages over Zhu & Ramanan: • Only face bound annotations needed • Better for lower resolution • 5 parts instead of 66 • Cascade detection
Overview Multi-view face detection Facial Landmarking Facial Action Unit Detection [Under Review] IVC. J. Orozco, B. Martinez, M. Pantic, “Empirical Analysis of Cascade Deformable Models for Multi-view Face Detection” 2010CVPR - M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial Point Detection using Boosted Regression and Graph Models” [81 citations] 2013TPAMI - B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local Evidence Aggregation in Regression-based Facial Point Detection” [IF 2012: 4.80, Q1] [Under Review] CVIU - B. Martinez, M. Pantic, “Facial landmarking for in-the-wild images with local inference based on global appearance” [IF 2012: 1.23, Q3] 2014TSMCB - B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling” [Under Review] IJCV - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic Analysis of Facial Actions: A Survey” [Under Review] ICPR - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision Level Fusion of Domain Specific Regions for Facial Action Recognition” 2014TSMCB - B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling” [Under Review] IJCV - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic Analysis of Facial Actions: A Survey” [Under Review] ICPR - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision Level Fusion of Domain Specific Regions for Facial Action Recognition” 2010CVPR - M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial Point Detection using Boosted Regression and Graph Models” 2013TPAMI - B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local Evidence Aggregation in Regression-based Facial Point Detection” [Under Review] CVIU - B. Martinez, M. Pantic, “Facial landmarking for in-the-wild images with local inference based on global appearance”
Part-based facial landmarking Classical part-based: Train: 1 classifier per point (e.g. logistic classifier) Construct response maps Test: Construct response map (sliding window over ROI) Maximise response constrained to feasible shape (constrained gradient ascent ) Do regression! CVPR 2010 – Facial Point Detection using Boosted Regression and Graph Models Constrained gradient ascent
Regression for Localisation Current estimate BoRMaN algorithm Face Detection Δx Regression: Δy Obtain prior location (starting point) HOG Eval. regressors (new location hypotheses) = Ground truth Correct hypothesis (shape restrictions) Output • MRF-based shape model • Detect bad estimations • Propose an alternative Multiple Regression Methodologies: Least Squares, SVR, GP, random forests…
Shape model Relations are rotation and scaleindependent Angle α between segments Ratio ρ between segment lengths
Regression-basedlandmarking Major improvements: Established a trend: • Prediction accumulation/voting • Facial landmarking using regression: • 2010: • CVPR • 2012: • CVPR (Microsoft Res.) • CVPR (ETH, Van Gool) • ECCV (Manchester Univ.– Cootes) • 2013: • TPAMI (iBug) • CVPR (CMU) • CVPR (iBug) • ICCV (Microsoft Res.) • ICCV (QMUL) 2013 TPAMI – Martinez, Valstar, Binefa, Pantic Cascaded regression Best performing nowadays! …
Regression: Vote aggregation What if we are too far from the target? What if we have bad predictions? Errors Uniformly distributed do NOT accumulate Errors Gaussiandistributed DO accumulate • Base of the algorithm: • Accumulate predictions, a prediction being a small Gaussian
Overview Multi-view face detection Facial Landmarking Facial Action Unit Detection [Under Review] IVC. J. Orozco, B. Martinez, M. Pantic, “Empirical Analysis of Cascade Deformable Models for Multi-view Face Detection” 2010CVPR - M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial Point Detection using Boosted Regression and Graph Models” 2013TPAMI - B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local Evidence Aggregation in Regression-based Facial Point Detection” [Under Review] CVIU - B. Martinez, M. Pantic, “Facial landmarking for in-the-wild images with local inference based on global appearance” 2014TSMCB - B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling” [IF 2012: 3.24, Q1] [Under Review] IJCV - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic Analysis of Facial Actions: A Survey” [IF 2012: 3.62, Q1] [Under Review] ICPR - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision Level Fusion of Domain Specific Regions for Facial Action Recognition” 2014TSMCB - B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling” [Under Review] IJCV - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic Analysis of Facial Actions: A Survey” [Under Review] ICPR - B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision Level Fusion of Domain Specific Regions for Facial Action Recognition” 2010CVPR - M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial Point Detection using Boosted Regression and Graph Models” 2013TPAMI - B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local Evidence Aggregation in Regression-based Facial Point Detection” [Under Review] CVIU - B. Martinez, M. Pantic, “Facial landmarking for in-the-wild images with local inference based on global appearance”
Action Unit detection – what is it about? Facial expression recognition Message judgment: Directly decode the meaning of the expression Happiness? • 6 universal expressions: happiness, anger, sadness, fear, surprise, disgust • (constant message to sign relation) • Pre-segmented episodes Pain? • Sign judgment: • Study the physical signals composing the expression • An AU relates to the activation of a facial muscle • “Agnostic” (not concern about “knowing” the message) • Can represent any expression • Reasoning upon needed to understand • Frame-based labelling Facial Action Coding System is the most common sign judgment approach.
Action Unit analysis: what and why • Research problems within the field: • AU detection (per-frame) • AU intensity estimation • AU temporal segment detection • AU correlations (for structured prediction) • Semantics of AUs • What do they allow (that normal facial expression analysis does not): • Pain detection • Deceit detection • Detection of social signals (conflict, agreement/disagreement,…)
How Action Unit detection is done Pre-processing Feature extraction Machine Analysis SVM, ANN, Boosting… Appearance Face detection Facial landmark detection Registration Dynamic T Non-ref. affine Trans. Graph models (label consistency) Geometric [Under Review] IJCV - Jiang, Martinez, Valstar, Pantic, “Automatic Analysis of Facial Actions: A Survey”
TOP features Markov Model over temporal segments Three orthogonal planes (TOP): Extension to spatio-temporal volumes of histogram features Neut Onset Representing the face Allows: analysis of AU temporal segments Apex Offset 2014 TSMC-B - “A dynamic appearance descriptor approach to facial actions temporal modelling”
Publications [Under Review] B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Automatic Analysis of Facial Actions: A Survey”. International Journal of Computer Vision [IF 2012: 3.62, Q1] J. Orozco, B. Martinez, M. Pantic, “Empirical Analysis of Cascade Deformable Models for Multi-view Face Detection”, Image and Vision Computing [IF 2012: 1.96, Q1] B. Martinez, M. Pantic, “Facial landmarking for in-the-wild images with local inference based on global appearance”, Computer Vision and Image Understanding [IF 2012: 1.23, Q3] B. Jiang, B. Martinez, M. Valstar, M. Pantic, “Decision Level Fusion of Domain Specific Regions for Facial Action Recognition”, Int. Conf. on Pattern Recognition, 2014 [Journals] 2014 B. Jiang, M. Valstar, B. Martinez, M. Pantic, “A dynamic appearance descriptor approach to facial actions temporal modelling”, In IEEE Tans. on System Man and Cybernetics – Part B [IF 2012: 3.24, Q1] 2013 B. Martinez, M. Valstar, X. Binefa, M. Pantic, “Local Evidence Aggregation in Regression-based Facial Point Detection”, In IEEE Trans. on Pattern Analysis and Machine Intelligence [IF 2012: 4.80, Q1] 2013 S. Petridis, B. Martinez, M. Pantic, “The MAHNOB Laughter Database”, In Image and Vision Computing Journal[IF 2012: 1.96, Q1] 2011 M. Vivet, B. Martinez and X. Binefa, “DLIG: Direct Local Indirect Global Alignment for Video Mosaicing”, In IEEE Trans. on Circuits and Systems for Video Technology [IF 1.65, Q2] 2008 B. Martinez, X. Binefa, “Piecewise affine kernel tracking for non-planar targets”, In Pattern Recognition [IF: 3.28, Q1] [Conferences] 2010 M. Valstar, B. Martinez, X. Binefa, M. Pantic, “Facial Point Detection using Boosted Regression and Graph Models”, In IEEE Int’l Conf. on Computer Vision and Pattern Recognition [27% acceptance rate, 81 citations] 2010 B. Martinez, X. Binefa, M. Pantic, “Facial Component Detection in Thermal Imagery”, In IEEE Int'l Conf. Computer Vision and Pattern Recognition - Workshops