500 likes | 643 Views
Expert working group on solid spectroscopy data model – 1 st meeting – Wednesday 13 January – LPG – Grenoble in the frame of VAMDC & Europlanet RI programs (also supported by ASOV – PCMI). Aims of Data model.
E N D
Expert working group on solid spectroscopy data model– 1st meeting –Wednesday 13 January – LPG – Grenoblein the frame of VAMDC & Europlanet RI programs (also supported by ASOV – PCMI)
Aims of Data model • Development of an European Solid Spectroscopy Data Model (ESSDaM) that we intend to propose to be, at least, an European standard for this field, and possibly an international one. • Include in the data model schema, up to some limited complexity level the requirements of most of the European solid spectroscopy data producers Schedule: • “completed” solid spectroscopy data model by March 2010 • Dictionary and documented (v0.?) by May 2010
How to proceed • start from the GhoSST core data model schema (v.0.2) and expand it • extend mostly on: • new types of spectroscopy techniques (reflection and emission spectroscopy, Raman, fluorescence …) • other types of solids (minerals/rocks, organic matter, …) • Complete, improve, homogeneize key-words
Aim of expert group • Advise the VAMDC and Europlanet teams on the necessary (and optional) improvements and extensions of the solid spectroscopy data model schema • Help to build some parts of data model schema • e.g. : minerals and rocks, organic matter, … • Define (all) • the query key-words • the information key-words • the units • Review the data model schema disctionary and documentation • April-May 2010 • Test (with end-users) the implemented database query interface • End 2010 ?
Systèmes expérimentaux pour l’étude des solides et des surfaces planétaires ● Spectromètre infrarouge à transformée de Fourier Spectroscopie en transmission (films minces et cristaux) ● Microscopie infrarouge (instrument commun OSUG) Cartographie en transmission, réflexion ou ATR ● Spectro-gonio radiomètreréflectance spectrale bidirectionnelle des surfaces granulaires ● Cellule environnementale SERAC Mesure des pression d’équilibre et cinétiques (glaces, clathrates)
Matériaux planétaires solides • Glaces, molécules volatile, hydrates, clathrates, … • Organiques: simples, matériaux macromoléculaires, polymères, • Roches, minéraux, sels, matériaux hydratés, … • Autres composés (composés Soufrés, …) • Echantillons naturels et Extraterrestres (météorites, IDP’s, …) • Composants optiques (fenêtres, filtres, réflecteurs, …) • Différents états physiques et texturaux : • Compacts (roche, glace, ..) • Poudre (minéraux, neige, …) : surface • Films minces • Grain, Monocristaux, section polie, … • Mélanges, … • Température : 10 K - 700 K
Visible-IR transmission Spectroscopy • Materials : ices, minerals, organic molecules and materials, optical materials • pure (ices, minerals, …) ≠ phases and temperatures • Mixtures (of ices, of minerals, …) of ≠ composition • Compounds (hydrates, clathrates, polymers, organics, …) • Synthetic, naturals • Spectral Range : 0,65 - 200 µm • Temperature: 10 K - 300 K • Processes : UV-Vis irradiation • Products: • level 1: Transmission spectra • level 2 : Normalized absorbance spectra • level 3 : Absorption coefficients • level 4 : Optical constants • level 5 : Band list : positions, attributions, bands parameters
Produits : Spectres - Absorbance normalisée (niv. 2) Constantes optiques (niv. 4)
Vis-NIR bidirectional reflectance Spectroscopy of surfaces • Materials : • H2O and CO2 ices, minerals, rocks, organic materials, salts, sulfur compounds… • Spectral Range : 0,3 – 4,8 µm • Angular Range : lightning = 0-85°, observation = 0-80°, azimut = 0-180° • Temperature: (80 K) - 230 K - 450 K • Processes : controled atmosphere, adsorption, (Vis irradiation) • Products: • level 1: Reflection spectra • level 2 : BRDF : reflectance function • level 3 : scattering parameters • level 5 : Band list : positions, attributions, bands parameters
Spectro-imagerie infrarouge microscopique • Materials : carbonaceous materials, naturals and synthetics, minerals and rocks • Spectral Range : 1 - 20 µm • Spatial Range : few µm • Temperature: 300 K - 900 K - … • Processes : controled Atmosphere • Products: • level 1: spectral maps • level 2: band parameters maps • level 3: composition maps • level 5 : Band list : positions, attributions, bands parameters
Produits : Tables de bandes(positions, attributions, paramètres,…) Bandes de la glace de CH4
Mesures des propriétés spectrales (0,4 – 200 µm) des solides moléculaires Spectromètre infrarouge à transformée de Fourier couplé à un système optique cryogénique (10 - 300 K) maintenu sous ultravide • Solides : • - Glaces • Clathrates, Hydrates, • Organiques, • Minéraux, … • Etude effets de : • Température • Phases • Composition • Composés • Irradiations UV • Applications : • Calottes de Mars • Volcanisme de Io • Surface de Titan • …
Mesure de la réflectance spectrale (0,3 – 4,8 µm) bidirectionnelle des surfaces granulaires Etude expérimentale du transfert radiatif dans les surfaces pour la télédétection • Etude effets de la : • - Composition, • - Taille et forme des grains, • - Rugosité de surface, • Indices optiques, … • Mesure spectres et fonctions de diffusion de : • - Glaces, minéraux, • - Organiques, • - Matériaux géophysiques, … • Applications : • Spectro-imagerie spatiale
Synthesis Sulphur BRDF Condensed / vacuum Melted/solidified Sintered powder 90°C Powders
Solid Spectroscopy Data Model (SSDM) B.Schmitt Laboratoire de Planétologie de Grenoble CNRS / UJF What are the important parameters in order to describe Solid Spectroscopy ? F-VAMDC 12 Dec 2008
GhoSST: Prototype Data model (transmission spectroscopy of molecular ices) - instrument - sample - spectra - band list - references select the relevant spectroscopic and solid parameters for astrophysicists / planetologists To be extended (other solids, other spectroscopies)
Instrument parameters • Measurement technics • Spectral / Angular / Spatial • range • resolution • sampling
Sample- Layers- Materials- Constituents : Moleculesor minerals Instrument parameters
Products : Spectra (levels 1 to 4) - Absorbance spectra (level. 2) Optical constants (level. 4)
Instrument parameters Spectra- Transmission spectra- Normalized absorbance- Absorption coefficients- Optical constants
Products : Band Lists (level 5)(positions, intensities, modes, …) Bands of CH4 ice
Band list DM1) Solid (molecular case) • Molecule (or isotope) • 2nd molecule • 1st molecule Proportion • Solid familly (molecular, mineral, …) • Compound type (pure, molec. mixt., clathrate, …) • Phase type (cristalline, amorphous solid, liquid, …) • Phase (Ic, Ih, IV, …) • Sample temperature • Annealing temperature and time • Gas pressure and composition
Band list DM 2) Spectroscopy • Frequency [+ uncertainty] • Width (FWHM) [+ uncertainty] • Peak Intensity (abs. coeff., or k) [+ uncertainty] • Integrated intensity (abs. coeff., or k) [+ uncertainty] • Band strength (vvs to vvw) • transition mode (ex: [(2,1),(1,2),(3,3)]) • mode type (ex: O-H stretching) • Reference list (1st measurement/attribution) + analyzed frequency range ?
Development of band list sub-database and tools Band lists • tables of : • positions, • width, • Intensities (peak, integrated) • vibration modes (+ type) • references Data Model • ~ 500 bandes sur 6 molécules (N2, CO, CO2, CH4, C2H6, SO2) • Data feeding interface, • Search engine • Visualisation, delivery
Laboratory Database For solid spectroscopy of planétological and astrophysical interest Current state B.Schmitt – P.Volcke Laboratoire de Planétologie de Grenoble CNRS / UJF
Data bases • Visible to far IR transmission spectroscopy- transmission spectra- optical constants- band lists • Spectroscopie vis-IR de surfaces en réflexion bidirectionnelle • Micro-spectrométries Raman et Fluorescence (+ ENS-Lyon) • Micro-spectroscopie infrarouge
Types of planetary solids - molecular solids : ices, volatile molecules, hydrates, clathrates • organic materials : simples, PAH, macromoleculars, polymers, … • minerals, salts, hydrated minerals, rocks, … • - natural and extraterrestrial samples (meteorites, IDP's, Stardust, ...) - optical componants (windows, filters, reflectors, ...)
GhoSST : Main Functions in development • Database administration interface • Search/Query engine • Tools : • interactive visualisation, comparisons • Spectral convolution, unit conversions • Data format converter, ... • Simulations transmission, reflection … • Data delivery system (files, figures, references) • User profile http://ghosst.obs.ujf-grenoble.fr
Data delivery System • Spectral file + uncertainties (units choice) • Metadata (sample, measurement, validity range, …) • Figure • References to be cited
Laboratoire de Planétologie de Grenoble (LPG)(will merge as « Institut de Planétologie et d’Astrophysique de Grenoble » – IPAG - in 2011) GhoSST (formerly STSP) “Grenoble Astrophysics and Planetology Solid Spectroscopy and Thermodynamics" database service http://ghosst.obs.ujf-grenoble.fr GhoSST structure is under development (Europlanet RI + VAMDC) Involvement in VAMDC: Aims : 1) develop molecular physics data model for solids 2) build the molecular solids physical properties databases - Organization of a group of European data publishers and users (with Europlanet RI) Discuss the solid datamodel: spectroscopy (2010) and physical properties (2011) 1st work meetings (13 january 2010) with data producers Solid spectroscopy datamodel - expand the datamodel to other types of spectroscopic data and solids (2009-2010) - implement on the GhoSST database (2010) - implement some tools on the GhoSST database (2010) - validate and add sets of spectroscopy data to GhoSST database (2009-2011)
To be done in FP7 ... • Laboratory spectroscopic databases for solids : • - Develop a generic database infrastructure for spectroscopic data of solids. • - Feed new databases covering : • - UV-to-FIR transmission spectroscopy of ices and organics (extend), • - UV-to-NIR bidirectional reflection spectroscopy of solid surfaces (planetary analogue materials: ices and hydrated minerals) • - NIR-MIR Emission spectroscopy of minerals (IPR/DLR-Berlin) • - Integration to IDIS : production ofinterfaces for interoperability JRA-4 : Transforming IDIS into a Planetary Virtual Observatory Task “New databases”
Laboratoire de Planétologie de Grenoble (LPG)(will merge as « Institut de Planétologie et d’Astrophysique de Grenoble » – IPAG - in 2011) GhoSST (formerly STSP) “Grenoble Astrophysics and Planetology Solid Spectroscopy and Thermodynamics" database service - http://ghosst.obs.ujf-grenoble.fr GhoSST structure is under development (Europlanet RI + VAMDC) VAMDC Participants and role: - Bernard Schmitt, DR2 CNRS Role: scientific manager for solid AM databases, user requirements, data models, registries and dictionaries, Quality Assurance and Documentation of data - Damien Albert, IE CNRS Role: technical manager, data models, XML Schema, software development, query language and protocols - Engineer VAMDC Role: XML Schema, building solid AM databases, Software development to access databases, query language and protocols - Post-doc VAMDC + INSU + ?? Role: user requirements, data models, registry and dictionaries, Documentation of data, Data validation. + database feeding - Expert group: Solid spectroscopists, physicists, geologists Role: scientific expertise, data producers and validation
Data model extensions • to describe : • additionnal instrument techniques • attributes to describe • Bidirectional / Biconic reflectance spectroscopy • Emission spectroscopy • IR + Raman + fluorescence micro-spectroscopies • new sample types ? • new spectra types or spectral products - additional types of materials • Minerals / Rocks • Which classification to use ? • Which attributes to completely characterize one mineral ? • Complex organics • How to characterize a complex synthetic or natural organic solid ?
Limitations of the evolution of data model to v1.0 • These are quite hard limitations in order to keep this version 1.0 simple although as complete as possible for the most fundamental data. • We favour wide spectroscopic and material type coverage in v1.0 to the detriment of complex samples. • The major reasons are: 1) Time: we want to have an operational extended data model before end of February 2010 in order to start its implementation in the database infrastructure. 2) Funding and commitment by our programs (VAMDC and Europlanet): other developments are more important at this level, such as data query, visualization and conversion tools. • So, any extension that will be proposed for v1.0 beyond these limitations needs to be very strongly argued! But they may be listed for next extensions v2.0, or 3.0 … . • Most importantly, and easier to implement, is to carefully check that all necessary, but generic, parameters (key-words) are well included in the data model, both for the already implemented “aspects” and for the extensions.
In bold are “dimensions” that are already implemented in v0.2 - ranges: UV Visible Near, mid and far-IR sub-mm - materials: molecular solids minerals, rocks complex organic compounds - samples: Solids or liquids, molecularaggregates 1 (pure) or 2-3 material components in any type of mixture => no limit ! Molecular mixing, granular mixing, layering (2 layers) + core/mantle
- sample processes: Temperature cycling Simple irradiations (one source) - spectroscopic techniques: Transmission Reflection (bidirectional, biconic, …) Emission Raman Fluorescence - data and products: Spectra (raw and transformed) Absorption coefficient and Optical constants Spectral products from the other techniques Band list for molecular solids (+ H2O in/on minerals)
Analysis of surfaces and aerosols spectra of solar system objects • identifications : band position, width and intensity (lab spectra, band list) • Composition and physical state : - aerosols or icy surfaces : radiative transfert models (optical constants) - planetary surface : comparison, decomposition (lab reflection spectra) Triton Pluto