380 likes | 395 Views
Understand the implications of Non-Standard Interactions (NSI) on neutrino oscillations, scattering off matter, and interactions in the Standard Model. Various theoretical frameworks and experimental constraints are discussed. Gauge invariance plays a crucial role in setting strong bounds on NSI. Potential extensions to the Standard Model are explored, including implications for charged fermions and the Higgs mechanism.
E N D
Bounds on Neutrino Non-Standard Interactions Enrique Fernández-Martínez MPI fürPhysik Munich Based on collaborations with: S. Antusch, J. Baumann, C. Biggio, M. Blennow, B. Gavela and J. LópezPavón
Introduction: NSI Generic new physics affecting n oscillations can be parameterized as 4-fermion Non-Standard Interactions: Production or detection of a nbassociated to a la So that n +na→p+lb p → m +na Y. Grossman hep-ph/9507344
Directboundsonprod/detNSI From m, b, p decays and zero distance oscillations Bounds order ~10-2 C. Biggio, M. Blennow and EFM 0907.0097
Introduction: NSI Non-Standard n scattering off matter can also be parameterized as 4-fermion Non-Standard Interactions: so that na→nbin matterf = e, u, d
DirectboundsonmatterNSI If matter NSI are uncorrelated to production and detection direct bounds are mainly from n scattering off e and nuclei Rather weak bounds… …can they be saturated avoiding additional constraints? S. Davidson, C. Peña garay, N. Rius and A. Santamariahep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607
Gauge invariance However is related to by gauge invariance and very strong bounds exist • → e g • m→ e in nucleai • t decays S. Bergmann et al. hep-ph/0004049 Z. Berezhiani and A. Rossihep-ph/0111147
LargeNSI? • We search for gauge invariant SM extensions satisfying: • Matter NSI are generated at tree level • 4-charged fermionops not generated at the same level • No cancellations between diagrams with different messenger particles to avoid constraints • The Higgs Mechanism is responsible for EWSB S. Antusch, J. Baumann and EFM 0807.1003 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
LargeNSI? At d=6 only one direct possibility: charged scalar singlet M. Bilenky and A. Santamariahep-ph/9310302
LargeNSI? Since lab= -lbaonly emm, emtand ett≠0 Very constrained: • m → e g • m decays • decays • CKM unitarity F. Cuypers and S. Davidsonhep-ph/9310302 S. Antusch, J. Baumann and EFM 0807.1003
SSB SSB LargeNSI? At d=6indirect way: fermionsinglets A. Broncano, M. B. Gavelaand E. Jenkins hep-ph/0210192
EffectiveLagrangian • 3 light n • all unitarity violation from NP withΛ > v • flavour universality
Effective Lagrangian • 3 light n • all unitarity violation from NP withΛ > v • flavour universality Diagonal mass and canonical kinetic terms
Effective Lagrangian • 3 light n • all unitarity violation from NP withΛ > v • flavour universality Diagonal mass and canonical kinetic terms N is not unitary
ni Z W ni nj la g W la ni lb (NN†) from decays • W decays Info on (NN†)aa • Invisible Z • Universality tests Info on(NN†)ab • Rare leptons decays Afterintegratingout W and Z neutrino NSI induced
Experimentally (NN†)fromdecays E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228 D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228 S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020 S. Antusch, J. Baumann and EFM 0807.1003
Non-Unitarity at a NF Golden channel at NF is sensitive to ete nm disappearance channel linearly sensitive to etm through matter effects Near t detectors can improve the bounds on eteand etm Combination of near and far detectors sensitive to the new CP phases S. Antusch, M. Blennow, EFM and J. López-pavón 0903.3986 SeealsoEFM, B. Gavela, J. López Pavón and O. Yasudahep-ph/0703098; S. Goswami and T. Ota 0802.1434; G. Altarelli and D. Meloni 0809.1041,….
LargeNSI? At d=8 more freedom Can add 2 H to break the symmetry between n and l with the vev There are 3 topologies to induce effective d=8 ops with HHLLfflegs: -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147; S. Davidson et al hep-ph/0302093
LargeNSI? We found three classes satisfying the requirements:
LargeNSI? We found three classes satisfying the requirements: Just contributes to the scalar propagator after EWSB Same as the d=6 realization with the scalar singlet 1 v2/2
LargeNSI? We found three classes satisfying the requirements: The Higgs coupled to the NR selects n after EWSB 2 -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147 S. Davidson et al hep-ph/0302093
LargeNSI? But can be related to non-unitarity and constrained 2
LargeNSI? For the matter NSI Where is the largest eigenvalue of And additional source, detector and matter NSI are generated through non-unitarityby the d=6 op
LargeNSI? We found three classes satisfying the requirements: Mixed case, Higgs selects one n and scalar singlet S the other 3
LargeNSI? Can be related to non-unitarity and the d=6antisymmetric op 3
LargeNSI? At d=8 we found no new ways of selecting n The d=6 constraints on non-unitarity and the scalar singlet apply also to the d=8 realizations What if we allow for cancellations among diagrams? S. Antusch, J. Baumann and EFM 0807.1003 Cancellingthe4-charged fermionops. B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
NSI in loops Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennow and EFM 0902.0607
NSI in loops • The loop contribution is a quadratic divergence • The coefficient k depends on the full theory completion • If no new physics below NSI scale L=M • Extra fine-tuning required at loop level to have k=0 or loop contribution dominates when1/16p2> v2/M2 C. Biggio, M. Blennow and EFM 0902.0607
Conclusions • Models leading “naturally” to NSI imply: • O(10-2-10-3) bounds on the NSI • Relationsbetweenmatter and production/detectionNSI • ProbingO(10-3) NSI at future facilities very challenging but not impossible, near detectors excellent probes • Saturating the mild model-independent bounds on matter NSI and decoupling them fromproduction/detectionrequiresstrong fine tuning
NSI in loops Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennowand EFM 0902.0607
NSI in loops Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennowand EFM 0902.0607
NSI in loops These loops are related by gauge invariance: Used to set loop bounds on eemthrough the log divergence However the log cancels when adding the diagrams… + C. Biggio, M. Blennowand EFM 0902.0607
NSI in loops The loop contribution is a quadratic divergence The coefficient k depends on the full theory completion: • Without cancellations k O(1) • At least L MW→old bounds are recovered eem< 8·10-4 • If no other new physics L=M→ NSI = 4CF if 1/16p2 > v2/M2 • Allowing cancellations also at loop level k = 0 • Only direct 0.1 bound on eem C. Biggio, M. Blennowand EFM 0902.0607
LargeNSI? General basis for d=8 ops. with two fermions and two H 2 left + 2 right 4 left Z. Berezhiani and A. Rossihep-ph/0111147 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
LargeNSI? To cancel the 4-charged fermion ops: but and NR scalarsinglet NR NR after a Fierztransformation
LargeNSI? There is always a 4 charged fermion op that needs canceling Toy model Cancellingthe4-charged fermionops. B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451
Type I seesaw Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic, … NRfermionicsinglet Type III seesaw Foot, Lew, He, Joshi, Ma, Roy, Hambye et al., Bajc et al., Dorsner, Fileviez-Perez SRfermionictriplet Othermodelsfornmasses Type II seesaw Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle, … Dscalartriplet
non-unitarymixing in CC • FCNC forn Type I: • non-unitarymixing in CC • FCNC forn • FCNC forchargedleptons Type III: • LFV 4-fermions • interactions Type II: Different d=6 ops A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 TypesII and III induce flavourviolation in thechargedlepton sector Strongerconstraintsthan in Type I
Lowscaleseesaws The d=5 and d=6 operators are independent Approximate U(1)L symmetry can keep d=5 (neutrino mass) small and allow for observable d=6 effects Seee.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 Inverse (Type I) seesaw Type II seesaw L= 1 -1 1 m<< M Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle,… Wyler, Wolfenstein, Mohapatra, Valle, Bernabeu, Santamaría, Vidal, Mendez, González-García, Branco, Grimus, Lavoura, Kersten, Smirnov,….