1 / 17

Article 5/2

Article 5/2. Center of Mass 237. their respective position vectors r = x i + y j + z k and r = x i + y j + z k. Thus, Eqs. 5/1 b are the components of the single vector equation. J r dm r = m. (5/2). The density p of a body is its mass per unit volume. Thus, the mass

swilliam
Download Presentation

Article 5/2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Article 5/2 CenterofMass 237 theirrespectivepositionvectorsr=xi+yj+zkandr=xi+yj+zk. Thus,Eqs.5/1barethecomponentsofthesinglevectorequation Jrdm r= m (5/2) Thedensitypofabodyisitsmassperunitvolume.Thus,themass ofadifferentialelementofvolumedVbecomesdm=pdV.Ifpisnot constantthroughoutthebodybutcanbeexpressedasafunctionofthe coordinatesofthebody,wemustaccountforthisvariationwhencalcu- latingthenumeratorsanddenominators ofEqs.5/1b. Wemaythen writetheseexpressionsas JxpdV JypdV JzpdV (5/3) y= z= x= JpdV JpdV JpdV CenterofMassversusCenterofGravity Equations5/1b,5/2,and5/3areindependentofgravitationaleffects sincegnolongerappears.Theythereforedefineauniquepointinthe bodywhichisafunctionsolelyofthedistributionofmass.Thispointis calledthecenterofmass,andclearlyitcoincideswiththecenterofgrav- ityaslongasthegravityfieldistreatedasuniformandparallel. Itismeaninglesstospeakofthecenterofgravityofabodywhichis removedfromthegravitationalfieldoftheearth,sincenogravitational forceswouldactonit.Thebodywould,however, stillhaveitsunique centerofmass.Wewillusuallyreferhenceforthtothecenterofmass ratherthantothecenterofgravity.Also,thecenterofmasshasaspe- cialsignificanceincalculatingthedynamicresponseofabodytounbal- ancedforces.ThisclassofproblemsisdiscussedatlengthinVol.2 Dynamics. Inmostproblemsthecalculation ofthepositionofthecenterof massmaybesimplifiedbyanintelligentchoiceofreferenceaxes.Ingen- eraltheaxesshouldbeplacedsoastosimplify theequationsofthe boundariesasmuchaspossible.Thus,polarcoordinateswillbeuseful forbodieswithcircularboundaries. Anotherimportantcluemaybetakenfromconsiderationsofsym- metry.Wheneverthereexistsalineorplaneofsymmetryinahomoge- neousbody,acoordinateaxisorplaneshouldbechosentocoincidewith thislineorplane.Thecenterofmasswillalwayslieonsuchalineor plane,sincethemomentsduetosymmetricallylocatedelementswillal- wayscancel,andthebody maybeconsideredcomposedofpairsofthese elements.Thus,thecenterofmassGofthehomogeneousright-circular coneofFig.5/5awillliesomewhereonitscentralaxis,whichisalineof symmetry.Thecenterofmassofthehalfright-circularconeliesonits planeofsymmetry,Fig.5/5b.ThecenterofmassofthehalfringinFig. 5/5cliesinbothofitsplanesofsymmetryandthereforeissituatedon G G (a) (b) A G B (c) Figure 5/5

  2. Chapter5 DistributedForces 238 lineAB.ItiseasiesttofindthelocationofG byusingsymmetrywhenit exists. 5/3 CentroidsofLines,Areas,andVolumes Whenthedensitypofabodyisuniformthroughout,itwillbea constantfactorinboththenumeratorsanddenominators ofEqs.5/3 andwillthereforecancel.Theremainingexpressions defineapurely geometricalpropertyofthebody,sinceanyreferencetoitsmassprop- ertieshasdisappeared.Thetermcentroidisusedwhenthecalculation concernsageometricalshapeonly.Whenspeakingofanactualphysical body,weusethetermcenterofmass.If thedensityisuniformthrough- outthebody,thepositionsofthecentroid andcenterofmassareiden- tical,whereasifthedensityvaries,thesetwopointswill,ingeneral,not coincide. Thecalculation ofcentroidsfallswithinthreedistinctcategories, dependingonwhetherwecanmodeltheshapeofthebodyinvolvedasa line,anarea,oravolume. (1)Lines. ForaslenderrodorwireoflengthL,cross-sectionalarea A,anddensityp,Fig.5/6,thebodyapproximatesalinesegment,and dm=pAdL.IfpandAareconstantoverthelengthoftherod,thecoor- dinatesofthecenterofmassalsobecomethecoordinatesofthecentroid Cofthelinesegment,which,fromEqs.5/1b,maybewritten z dL L y C z JxdL JydL JzdL x= y= z= L L L – z x– (5/4) x y x Notethat,ingeneral,thecentroidCwillnotlieontheline.Iftherod lieson asingleplane,suchasthex-yplane,onlytwocoordinatesneedto becalculated. (2)Areas.Whenabodyofdensityphasasmallbut constantthick- nesst,wecanmodelitasasurfaceareaA,Fig.5/7.Themassofanele- mentbecomesdm=ptdA.Again,ifpandtareconstantovertheentire area,thecoordinatesofthecenterofmassofthebodyalsobecomethe coordinatesofthecentroidCofthesurfacearea,andfromEqs.5/1bthe coordinatesmaybewritten Figure 5/6 z dA C z– A JxdA JydA JzdA x= y= z= A A A z y (5/5) x– x y– t y ThenumeratorsinEqs.5/5arecalledthefirstmomentsofarea.*If the surfaceiscurved,asillustratedinFig.5/7withtheshellsegment,all threecoordinateswillbeinvolved.ThecentroidCforthecurvedsur- facewillingeneralnotlieonthesurface.If theareaisaflatsurfacein, x Figure 5/7 *Secondmomentsofareas(momentsoffirstmoments)appearlaterinourdiscussionof areamomentsofinertiainAppendixA.

  3. Article 5/3 CentroidsofLines,Areas,andVolumes 239 say,thex-yplane,onlythecoordinatesofCinthatplaneneedtobe calculated. (3)Volumes.ForageneralbodyofvolumeVanddensityp,theele- menthasamassdm=pdV.Thedensitypcancelsifitisconstantover theentirevolume,andthecoordinatesofthecenterofmassalsobecome thecoordinatesofthecentroidCofthebody.From Eqs.5/3or5/1bthey become JxdV JydV JzdV x= y= z= (5/6) V V V KEYCONCEPTS ChoiceofElementforIntegration Theprincipaldifficultywithatheoryoftenliesnotinitsconcepts butintheproceduresforapplyingit.Withmasscentersandcentroids theconceptofthemomentprincipleissimpleenough;thedifficultsteps arethechoiceofthedifferential elementandsettinguptheintegrals. Thefollowingfiveguidelineswillbeuseful. (1)Order ofElement.Wheneverpossible,afirst-orderdifferential elementshouldbeselectedinpreferencetoahigher-order elementso thatonlyoneintegration willberequiredtocovertheentirefigure. Thus, inFig.5/8aafirst-orderhorizontalstripofareadA=ldywillre- quireonlyoneintegration withrespecttoytocovertheentirefigure. Thesecond-orderelementdxdywillrequiretwointegrations,firstwith respecttoxandsecondwithrespecttoy,tocoverthefigure.Asafurther example,forthesolidcone inFig.5/8bwechooseafirst-orderelementin theformofacircularsliceofvolumedV=r2dy.Thischoicerequires onlyone integration,andthusispreferabletochoosingathird-orderele- mentdV=dxdydz,whichwouldrequirethreeawkwardintegrations. (2)Continuity.Wheneverpossible,wechooseanelementwhichcan beintegratedinonecontinuousoperationtocoverthefigure.Thus,the horizontalstripinFig.5/8awouldbepreferabletothevertical stripin Fig.5/9,which,ifused,wouldrequiretwoseparateintegralsbecauseof thediscontinuityintheexpressionfortheheightofthestripatx=x1. (3)DiscardingHigher-OrderTerms. Higher-ordertermsmayal- waysbedroppedcomparedwithlower-orderterms(seeArt.1/7). Thus, theverticalstripofareaunderthecurveinFig.5/10 isgivenbythe y y dy y x x1 x dx Figure 5/9 Figure 5/10 y y l dy dx dy x x (a) y y dy r x z (b) Figure 5/8

  4. 240 Chapter5 DistributedForces y y r x θ x Figure 5/11 first-ordertermdA=ydx,andthesecond-ordertriangulararea1dxdy isdiscarded.Inthelimit,ofcourse,thereisnoerror. (4) ChoiceofCoordinates.Asageneralrule,wechoosethecoordi- natesystemwhichbestmatchestheboundaries ofthefigure.Thus,the boundariesoftheareainFig.5/11aaremosteasilydescribedinrectan-gularcoordinates,whereastheboundariesofthecircularsector ofFig. 5/11barebestsuitedtopolarcoordinates. (5)CentroidalCoordinateofElement.Whenafirst-orsecond- orderdifferentialelementischosen,itisessentialtousethecoordinate ofthecentroidoftheelementforthemomentarminexpressingthemo- mentofthedifferentialelement.Thus,forthehorizontalstripofareain Fig.5/12a, themomentofdAaboutthey-axisisxcdA,wherexcisthe x-coordinateofthecentroidCoftheelement. Notethatxcisnotthex whichdescribeseitherboundaryofthearea.Inthey-directionforthis elementthemomentarmycofthecentroidoftheelementisthesame, inthelimit,asthey-coordinatesofthetwoboundaries. Asasecondexample,considerthesolidhalf-coneofFig.5/12bwith thesemicircularsliceofdifferentialthicknessastheelementofvolume. Themomentarmfortheelementinthex-directionisthedistancexcto thecentroidofthefaceoftheelementandnotthex-distance tothe boundaryoftheelement.Ontheotherhand, inthez-directionthemo- mentarmzcofthecentroidoftheelementisthesameasthez-coordinate oftheelement. Withtheseexamplesinmind,werewriteEqs.5/5and5/6intheform JxcdA JycdA JzcdA A A A y x xc zc C x y z (a) (b) Figure 5/12 2 x=ky (a) (b) 2 x= y= z= (5/5a) yc xc C

  5. Article 5/3 CentroidsofLines,Areas,andVolumes 241 and JxcdV JycdV JzcdV V V V Itisessentialtorecognizethatthesubscriptcservesasareminderthat themomentarmsappearinginthenumeratorsoftheintegralexpres- sionsformomentsarealwaysthecoordinates ofthecentroidsofthe particularelementschosen. Atthispointyou shouldbecertaintounderstandclearlytheprinci- pleofmoments,whichwasintroducedinArt.2/4.Youshouldrecognize thephysicalmeaningofthisprincipleasitisappliedtothesystemof parallel weightforcesdepictedinFig.5/4a.Keepinmindtheequiva- lencebetweenthemomentoftheresultantweightWandthesum(inte- gral)ofthemomentsoftheelementalweightsdW, toavoidmistakesin settingupthenecessarymathematics.Recognitionoftheprincipleof momentswillhelpinobtainingthecorrectexpression forthemoment armxc,yc,orzcofthecentroidofthechosendifferentialelement. Keepinginmindthephysicalpictureoftheprincipleofmoments, wewill recognizethatEqs.5/4,5/5,and5/6,whicharegeometricrela- tionships,aredescriptivealsoofhomogeneousphysicalbodies,because thedensitypcancels.Ifthedensityofthebodyinquestionisnotcon- stantbutvaries throughoutthebodyassomefunctionofthecoordi- nates, thenitwillnotcancelfromthenumeratoranddenominatorof themass-centerexpressions.Inthisevent,wemustuseEqs.5/3asex- plainedearlier. x= y= z= (5/6a) SampleProblems5/1 through5/5whichfollowhavebeencarefully chosentoillustratetheapplicationofEqs.5/4,5/5,and5/6forcalculat- ingthelocationofthecentroidforlinesegments(slenderrods),areas (thinflatplates), andvolumes(homogeneoussolids).Thefiveintegra- tionconsiderationslistedaboveareillustratedindetailinthesesample problems. SectionC/10 ofAppendixCcontainsatableofintegralswhichin- cludesthoseneededfortheproblemsinthisandsubsequentchapters.A summaryofthecentroidalcoordinatesforsomeofthecommonlyused shapesisgiveninTablesD/3andD/4,AppendixD.

  6. 242 Chapter5 DistributedForces SAMPLEPROBLEM5/1 Centroidofacirculararc. Locatethecentroidofacirculararcasshownin the figure. r a C a Solution. Choosingtheaxisofsymmetryasthex-axismakesy=0.Adiffer- entialelementofarchasthelengthdL=rdOexpressedinpolarcoordinates, andthex-coordinateoftheelementisrcosO. ApplyingthefirstofEqs.5/4andsubstituting L=2argive O [Lx=JxdL] (2ar)x=J a y rcos0 d0 a 0 x a r C C 2r/π r r (rcosO)rdO rd0 -a 2arx=2r2sina x=rsina Ans. a Forasemicirculararc2a=,whichgivesx= 2r/.Bysymmetrywesee immediatelythatthisresultalsoappliestothequarter-circulararcwhenthe measurement ismadeasshown. HelpfulHint OItshouldbe perfectlyevidentthatpolarcoordinatesarepreferabletorectan- gularcoordinates toexpressthelengthofacirculararc. SAMPLEPROBLEM5/2 y dy h x y x Centroidofatriangulararea. Determinethedistancehfromthebaseofa triangleofaltitudehtothecentroidofitsarea. Solution. Thex-axisistakentocoincidewiththebase.Adifferentialstripof areadA=xdyischosen. Bysimilartrianglesx/(h-y)=b/h.Applyingthesec- ondofEqs.5/5agives O b [Ay=JycdA] h dy=bh2 y 2 6 h 0 HelpfulHint OWe save one integration here by usingthefirst-orderelementofarea.RecognizethatdAmustbeexpressedintermsofthe integration variabley;hence,x=ƒ(y)isrequired. y=h Ans. and 3 Thissameresultholdswithrespecttoeitheroftheothertwosidesofthe triangleconsideredanewbasewithcorrespondingnewaltitude.Thus,thecen- troidliesattheintersectionofthemedians,sincethedistanceofthispointfrom anysideisone-thirdthealtitude ofthetriangle withthatsideconsideredthe base.

  7. Article 5/3 CentroidsofLines,Areas,andVolumes 243 SAMPLEPROBLEM5/3 Centroidofthe areaofacircularsector. Locatethecentroidofthearea ofacircularsectorwithrespecttoitsvertex. r a C a SolutionI. Thex-axisischosenastheaxisofsymmetry,andyistherefore automaticallyzero.Wemaycovertheareabymovinganelementin theformof apartialcircular ring,asshowninthefigure,fromthecentertotheouterpe- riphery.TheradiusoftheringisrOanditsthicknessisdrO,sothatitsarea is dA=2rOadrO. Thex-coordinatetothecentroidoftheelementfromSampleProblem5/1 is xc=rOsina/a, whererOreplacesrintheformula.Thus,thefirstofEqs.5/5a gives y r dr0 x a r0sina xc=——––– SolutionI O a r0 8 J 2a(r2)x=J r rOsina a ( O ) [Ax= xcdA] (2rOadrO) 2 a r2ax=2r3sina 3 x=2rsina Ans. 3 a HelpfulHints ONotecarefullythatwemust distin- guishbetweenthevariable rO andtheconstantr. 8BecarefulnottouserOasthecen- troidalcoordinatefortheelement. SolutionII. Theareamayalsobecoveredbyswingingatriangleofdifferen- tialareaaboutthevertexandthroughthetotalangleofthesector.Thistriangle, shownintheillustration, hasanareadA=(r/2)(rdO), wherehigher-order terms areneglected.FromSampleProblem5/2thecentroidofthetriangularelement ofareaistwo-thirdsofitsaltitudefromitsvertex,sothatthex-coordinatetothe centroidoftheelementisxc=2rcosO.ApplyingthefirstofEqs.5/5agives 3 [Ax=JxcdA] (r2a)x=J 3rcosO)(2r2dO) a (2 1 y xc=2 3 d0 a 0 x a r SolutionII 4r/3π C C r r -a r2ax=2r3sina 3 x=2rsina Ans. andasbefore 3 a Forasemicirculararea2a=,whichgivesx=4r/3.Bysymmetrywesee immediatelythatthisresultalsoappliestothequarter-circularareawherethe measurement ismadeasshown. Itshouldbenotedthat,ifwehadchosenasecond-order elementrOdrO dO, oneintegrationwithrespecttoOwouldyieldtheringwithwhich SolutionI began.Ontheotherhand,integrationwith respecttorOinitially wouldgivethetriangularelementwithwhichSolutionIIbegan.

  8. 244 Chapter5 DistributedForces SAMPLEPROBLEM5/4 Locatethecentroidoftheareaunderthecurvex=ky3fromx=Otox=a. y x=ky3 – C b – a x x SolutionI. AverticalelementofareadA=ydxischosenasshowninthefig- ure.Thex-coordinateofthecentroidisfoundfromthefirstofEqs.5/5a.Thus, y [Ax=JxcdA] xJydx=J a a O xydx O O y b x=ky3 y y =y 2 x y b 2 x=ky3 dy x a–x y a x Substituting y=(x/k)1/3 andk=a/b3andintegratinggive 3abx=3a2b x=4a c – x dx Ans. 7 4 7 InthesolutionforyfromthesecondofEqs.5/5a,thecoordinatetothe centroidoftherectangularelementisyc=y/2,whereyistheheightofthestrip governedbytheequationofthecurvex=ky3.Thus,themomentprinciplebe- comes [Ay=Jy dA] 3aby=J a y (2) yd x c 4 a O Substituting y=b(x/a)1/3 andintegratinggive 3aby=3ab2 y=2b Ans. 5 4 1O xc=–a–+––x SolutionII. Thehorizontalelementofareashowninthelowerfiguremaybe employedinplaceoftheverticalelement.Thex-coordinatetothecentroidofthe rectangularelementisseentobexc=x+1(a-x)=(a+x)/2,whichissimply 2 theaverageofthecoordinates aandxoftheendsofthestrip.Hence, [Ax=JxcdA] xJ(a-x)dy=J b b (a+x )(a-x)dy 2 O O Thevalueofyisfoundfrom [Ay=JycdA] yJ(a-x)dy=Jy(a-x)dy b b O O HelpfulHint ONote thatxc =x for the vertical element. whereyc=yforthehorizontalstrip.Theevaluationoftheseintegralswillcheck thepreviousresultsforxandy.

  9. Article 5/3 CentroidsofLines,Areas,andVolumes 245 SAMPLEPROBLEM5/5 Hemisphericalvolume. Locatethe centroidofthe volumeofahemisphere ofradiusrwithrespecttoitsbase. SolutionI. Withtheaxeschosenasshownin thefigure,x=z=Obysymme- z y2+z2 =r2 z y r dy x yc=y SolutionI z yc=y/2 dz z y r x SolutionII z dθ r rdθ θ y SolutionIII try.Themostconvenientelementisacircularsliceofthicknessdyparallelto thex-zplane.Sincethehemisphereintersectsthey-zplaneinthecircley2+z2= r2,the radiusofthe circularsliceisz=+Jr2-y2.Thevolumeofthe elemental slicebecomes dV=(r2-y2)dy 0 ThesecondofEqs.5/6arequires I yI I r r (r2-y2)dy= y(r2-y2)dy [Vy= yedV] O O whereye=y.Integrating gives 2r3y=lr4 y=3r Ans. 3 4 8 y SolutionII. Alternativelywemayuseforourdifferentialelementacylindrical shelloflengthy, radiusz,andthicknessdz,asshown inthe lowerfigure.Byex- pandingtheradiusoftheshellfromzerotor,wecovertheentirevolume.By symmetrythecentroidoftheelementalshellliesatitscenter,sothatye=y/2. ThevolumeoftheelementisdV=(2zdz)(y).Expressingyintermsofzfrom theequationofthecirclegivesy=+Jr2-z2.Usingthevalueof2r3computed 3 inSolutionIforthevolumeofthehemisphereandsubstitutinginthesecondof Eqs.5/6agiveus I 3r3)y=I r 2 2 Jr -z (2 (2zJr2-z2)dz [Vy= y dV] e 2 O =I (r2z-z3)dz=r4 r 4 O y=3r Ans. 8 SolutionsIandIIareofcomparableusesinceeachinvolves anelementof simpleshapeandrequiresintegrationwithrespecttoonevariableonly. SolutionIII. Asanalternative,wecouldusetheangle0asourvariablewith limitsofOand/2.Theradiusofeitherelementwouldbecomersin0,whereas thethicknessofthesliceinSolutionIwouldbedy=(rd0)sin0andthatofthe shellinSolutionIIwouldbedz=(rd0)cos0.Thelengthoftheshellwouldbe y=rcos0. HelpfulHint 0Canyouidentifythehigher-orderel- ementof volumewhichisomitted fromtheexpressionfordV?

  10. 246 Chapter5 DistributedForces PROBLEMS IntroductoryProblems 5/1Withyourpencil,makeadotonthepositionofyour bestvisualestimateofthecentroidofthetriangular area.Checkthepositionofyourestimatebyreferring totheresultsofSample Problem5/2andtoTable D/3. 5/3Specifythex-,y-,andz-coordinatesofthemasscen- terofthehomogeneoussemicylinder. y 360 mm 120 mm x 10 z Problem5/3 8 Specifythex-,y-,andz-coordinatesofthemasscenter ofthequadrantofthehomogeneoussolidcylinder. 5/4 6 4 240mm z y 2 120 mm 0 0 2 4 6 8 10 Problem5/1 x 5/2Withyourpencil,makeadotonthepositionofyour bestvisualestimateofthecentroidoftheareaofthe circularsector.Checkyourestimatebyusingthere- sultsofSampleProblem5/3. Problem5/4 Auniformsemicircular rodofradiusrissupportedin abearingatits upperendandisfreetoswinginthe verticalplane.Calculatetheangle0madebythedi- ameterwiththeverticalfortheequilibrium position. 5/5 y 200mm 30° 30° O θ x r Problem5/2 Problem5/5

  11. Article 5/3 Problems 247 5/6Determinethey-coordinateofthecentroidofthearea bydirectintegration. Determinethex-andy-coordinatesofthecentroidof theshadedarea. 5/9 y y y= x3 1+— R 8 R/2 x 1 Problem5/6 5/7Determinethey-coordinateof thecentroidof the shadedarea.Checkyourresultforthespecialcase a=O. x 0 0 1 2 Problem5/9 y Determinethecoordinatesof thecentroidof the shadedarea. 5/10 h 60° y b a 60° x x=ky2 a Problem5/7 5/8Determinethex-andy-coordinatesofthecentroidof thetrapezoidalarea. x y Problem5/10 Determinethecoordinatesof thecentroidof the shadedarea. 5/11 y a πx y=bsin —– b 2a x h Problem5/8 b x a Problem5/11

  12. 248 Chapter5 DistributedForces RepresentativeProblems 5/12Determinethex-andy-coordinatesofthecentroid oftheshadedarea. Locatethecentroidoftheshadedareashown. 5/15 y y 3 x 0 a x2 ––––4 y= x 4 a 2 –3 Problem5/12 –4 5/13Determinethecoordinatesof thecentroidof the shadedarea. Problem5/15 Determinethex-andy-coordinatesofthecentroid ofthetrapezoidalarea. 5/16 y y x=ky2 a a h x b Problem5/13 x 5/14Findthedistancezfromthevertexoftheright- b circularconetothecentroidofitsvolume. Problem5/16 Locatethecentroidoftheshadedarea. 5/17 – z y h C x=a(1–—– ) 2 y b2 b Problem5/14 x a Problem5/17

  13. Article 5/3 Problems 249 Determinethex-coordinateofthemasscenterof thetaperedsteelrodoflengthLwherethediameter atthelargeendistwicethediameteratthesmall end. 5/18Determinethecoordinatesof thecentroidof the shadedarea. 5/21 y b y=kx2 y L x –b– 2 Dia.=2D Dia.=D Problem5/21 x 0 a 0 Determinethex-andy-coordinatesofthecentroid oftheshadedarea. 5/22 Problem5/18 y 5/19Themassperunitlengthoftheslenderrodvaries withpositionaccordingtop=pO(l-x/2), wherexis infeet.Determinethelocationofthecenterofmass oftherod. a y=k2 x y=k1x3 a 1′ x x Problem5/22 Problem5/19 Determinethex-andy-coordinatesofthecentroid oftheshadedareashown. 5/23 5/20Calculatethecoordinatesofthecentroidoftheseg- mentofthecirculararea. y y a x2 y2 a2 b2 —+—=1 b x x a Problem5/20 Problem5/23

  14. 250 Chapter5 DistributedForces 5/24Locatethecentroidoftheareashowninthefigure bydirectintegration.(Caution:Observecarefullythe propersignoftheradicalinvolved.) If theshadedareaof Prob. 5/26isrotated360° aboutthey-axis,determinethey-coordinateofthe centroidoftheresultingvolume. 5/27 y Determinethex-andy-coordinatesofthecentroid oftheshadedarea. 5/28 y a a 2 a x — Problem5/24 x 5/25UsetheresultsofSampleProblem5/3tocompute thecoordinatesofthemasscenteroftheportionof thesolidhomogeneouscylindershown. z Problem5/28 Determinethey-coordinateofthecentroidofthe shadedarea. 5/29 y a 45° a 2 45° 6′′ 10′′ x y x Problem5/25 Problem5/29 5/26Determinethey-coordinateofthecentroidofthe shadedareashown. Determinethez-coordinateofthecentroidofthe volume generatedby revolving the shadedarea aroundthez-axisthrough360°. 5/30 y b Parabolic z a a –b– 5 r Problem5/30 x 0 a 0 Problem5/26

  15. Article 5/3 Problems 251 Determinethex-coordinateofthecentroidofthe solidsphericalsegment.Evaluateyourexpression forh=R/4andh=0. The figurerepresentsaflatpieceof sheetmetal symmetricalaboutaxisA-Aandhavingaparabolic upperboundary.Chooseyourowncoordinatesand 5/31 5/34 calculatethedistancehfromthebasetothecenter ofgravityofthepiece. y h A x 3′′ R O 2′′ 3′′ A Problem5/34 Problem5/31 Determinethex-coordinateofthemasscenterof theportionof thesphericalshellof uniformbut smallthickness. 5/35 Locatethecentroidoftheshadedareabetweenthe ellipseandthecircle. 5/32 y y R — 4 b –3—R 4 x b a x Problem5/32 Calculatethedistancehmeasuredfromthebaseto thecentroidofthevolumeofthefrustumofthe right-circular cone. 5/33 y Problem5/35 h —h 2 r z Problem5/33

  16. 252 Chapter5 DistributedForces Determinethey-coordinateofthecentroidofthe volumegenerated byrevolvingtheshadedareaof therighttriangleaboutthez-axisthrough90° as showninthefigure. 5/36Thethicknessofthetriangularplatevarieslinearly withyfromavaluet0alongitsbasey=0to2t0at y=h.Determinethey-coordinateofthecenterof massoftheplate. 5/39 y y 2t 0 h h h x x b t0 b Problem5/36 z 5/37Locatethemasscenterofthehomogeneoussolid bodywhosevolumeisdeterminedbyrevolvingthe shadedareathrough360°aboutthez-axis. Problem5/39 Determinethez-coordinateofthemasscenterofthe homogeneousquarter-sphericalshell,whichhasa radiusr. �5/40 r 300mm z 200mm y r=kz3 z r 0 0 x Problem5/40 Problem5/37 �5/41 Determinethey-coordinateofthecentroidofthe planeareashown.Seth=0 inyourresultandcom- 5/38Thehomogeneousslenderrodhasauniformcross sectionandisbentintotheshapeshown.Calculate the y-coordinateof the masscenter of the rod. y=4a parewiththeresult forafullsemicircular 3 (Reminder: A differential arc length is dL= area(seeSampleProblem5/3andTableD/3).Also evaluateyourresultfor theconditionsh=aand J(dx)2+(dy)2=Jl+(dx/dy)2dy.) y 4 h=a. 2 x=ky2 y 100mm a h x x 100mm Problem5/41 Problem5/38

  17. Article 5/3 Problems 253 �5/42 �5/45 Determinethex-coordinateofthemasscenterofthe cylindricalshellofsmalluniformthickness. The thickness of the semicircular plate varies linearlywithyfromavalue2t0alongitsbasey=0 tot0 aty=a.Determinethey-coordinateof the masscenteroftheplate. 2R y t0 R a x 2t0 x Problem5/42 4R �5/43 Determinethecoordinatesofthecentroidofthevol- umeobtainedbyrevolvingtheshadedareaaboutthe z-axisthroughthe90°angle. Problem5/45 z �5/46 Determinethex-andy-coordinatesofthecentroid of thevolumegeneratedbyrotatingtheshaded areaaboutthez-axisthrough90°. a z a x y y a Problem5/43 �5/44 Determinethex-coordinateofthemasscenterofthe solidhomogeneousbodyshown. 2R x R Problem5/46 x 4R Problem5/44

More Related