1 / 24

Color, Shading, Light

Color, Shading, Light. Ian C. Scott-Fleming. Topics to Cover. Paper: Computational Model for Color Naming Some background a quick look at: Color, solar spectrum, eye as a detector Color spaces Summary of paper. Light, Spectrum, Eye.

sybil
Download Presentation

Color, Shading, Light

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Color, Shading, Light Ian C. Scott-Fleming

  2. Topics to Cover • Paper: Computational Model for Color Naming • Some background a quick look at: • Color, solar spectrum, eye as a detector • Color spaces • Summary of paper

  3. Light, Spectrum, Eye Interesting note: birds have 4 color receptors – they have one in the UV. Which suggests that other than when displaying for humans, there’s no particular reason to limit computer vision to 3 channels… Note: The visible colorspace contains colors not in the solar spectrum: R+G = Yellow (~575 nm), but R+B=Magenta, which is not the color at 555 nm (Yellow-Green). We perceive ‘chords’ as a single color.

  4. Brightness and Color • Difference between an Eye and a Camera: • Eye adjusts pupil as light level changes • Yellow stays yellow for eye • Cameras (most) do not have an adjustable pupil. • As Yellow gets brighter, Red & Green saturate at (255), and color will shift towards (pale) blue • Camera Detectors not as linear near saturation or near zero, so colors can shift with light levels

  5. Shading with Surface Angle • Surface Brightness is proportional to cosine of angle between surface normal and incident light • A Ball looks spherical even with 1 eye closed, because we infer shape from shading • We see shading of Soccer Ball, but perceive it as all 1 color (orange) and spherical • Computer sees flat (2-D) image of Soccer Ball as range of colors.

  6. Color Spaces • We want a color space where color is orthogonal to brightness, so we can (more easily) detect color independent of lighting level • Some candidates: • YCbCr (YPbPr) • YUV • HSL (HSV) • LAB

  7. RGB • +: matches eye model nicely • +: Easy to implement in hardware • Put 3 photodetectors close together and deposit different bandpass filters • Digitize each pixel and send as color triplet • -: Color and brightness are coupled in each channel

  8. YPbPr, YCbCr, YUV • Y: Brightness • Pb: difference between B & weighted sum of R,G • Pr: diff between R & B,G • Easy to implement: • Software: simple matrix multiply, or: • Hardware: a few op amps between readout & digitizer YPbPr ======================================================== Y' = + 0.299 * R' + 0.587 * G' + 0.114 * B' Pb = - 0.168736 * R' - 0.331264 * G' + 0.5 * B' Pr = + 0.5 * R' - 0.418688 * G' - 0.081312 * B' ........................................................ R', G', B' in [0; 1] Y' in [0; 1] Pb in [-0.5; 0.5] Pr in [-0.5; 0.5] YCbCr identical to YPbPr except scaled 0-255 instead of 0-1 YUV like YPbPr, but U,V scaled slightly differently (used for analog TV signal transmission)

  9. LAB • Intended to encapsulate human perception of color differences: • Euclidean distance between colors in LAB proportional (sort-of) to perceived difference between colors • Calculations complex: • Matrix multiply followed by non-integer exponentiation

  10. HSL, HSV • Hue (color) • Represents angle on a color wheel • Saturation – measure of pureness of color • No saturation: pure color • Some saturation: whitish (pastels) • fully saturated: black/gray/white (no color) • Value (or Lightness) – brightness (grayscale) • +: Better Matches how we perceive color (light green, dark blue) • -: Difficult to implement: requires series of if/then/else statements • -: Color not completely decoupled from brightness

  11. For HSV: H is same, V = max, S = (max-min)/max

  12. Comparison of HSL (left) & HSV (right)

  13. Paper: Color Naming • Develop a human-color-perception naming scheme that can be implemented on a computer, and some metrics for measuring distances in color space • Demonstrate how it can be used (in conjunction with other standard CV tools) to segment an image and describe the colors in it

  14. 3 Parts to the Paper • Develop a Language for color Naming • in CS sense of language: • Syntax, semantics, vocabulary • Generate a Metric for mapping an arbitrary color to a ‘nearest’ color prototype (aka focus) • Locate nearest prototype • Measure difference from prototype • Demonstrate Segmentation and extracting color composition

  15. Develop Language • Conducted some experiments with humans to see how consistent naming is, how universal color names are • Created a well-defined syntax with several levels of descriptiveness

  16. Syntax: • Proposed language is basically a recursive systematization of HSL color space: • <color name> • <color name>:<chromatic name> | <achromatic name> • <chromatic name>: <lightness><saturation><hue> | <saturation><lightness><hue> • <achromatic name>:<lightness><achromatic term> • Red, Green, Orange, Brown, Cyan, etc. • <lightness>: blackish | very dark | dark | medium | light | very light | whitish • Dark blue, light green, etc. • <saturation>:grayish | moderate| medium | strong | vivid • Strong blue, vivid yellow, etc. • <hue>: <generic hue> | <halfway hue> | <quarterway hue> • <generic hue>: red | orange | brown | yellow | green | blue | purple | pink | beige | olive • <halfway hue>: <generic hue> - <generic hue> • <quarterway hue>: <ish form><generic hue> • <ish form>: reddish | brownish | yellowish | greenish | bluish | purplish | pinkish • <achromatic term>: <generic achromatic term> | <ish form><generic achromatic term> • <generic achromatic term>: gray | black | white

  17. Multiple Levels for different descriptive requirements: • Fundamental Level: a generic hue • Course level: add a luminance descriptor • Medium level: add saturation • Minute level: Complete color syntax ( including halfway & quarterway hues?) • Appropriate level used depended upon situation. • The car is green • The sky is light blue while the lake is dark blue • minute level only when needing to be very specific

  18. Color Metric Figure 1 & Table 1 assert that LAB distance (DLAB)not a good distance measure. Author reports that ThetaHLS and DHLS correlate better with perceived distance. Also, with sparse set of color names nearest prototype color not necessarily appropriate. Example: Nearest Prototype in LAB space maps some grays to “Whitish Pink”, etc. Author develops a metric which weighs ThetaHLSmore heavily than LAB distance does in calculating distance

  19. Modified Distance Measure • Geometric rationale for measure: • Find a point, Copt , along prototype color’s (C0) vector from origin, which best represents color Cx. • Adjust Copt so that it’s distance from projection of Cx incorporates penalty for size of thetaHSL Note: Author doesn’t provide clear justification for why this is a better measure. Simply presents statistic that it matches human judgment of color differences better than DLAB. Nor does she explain in what sense Coptis “optimal”.

  20. Example Application: Color-Segmenting an image and obtaining Color Labels • First, a “Textbook case” of how to rigorously segment a color image • Steps correspond in some sense to human perception process to adapt to light levels and assign colors • Adjust for camera nonlinearities (gamma correction, “Color Constancy Issues”) • Most images include gamma encoding so they will display properly on a CRT screen. • Median-Filter image to remove noise • Remove zero-offset (black bias) and do contrast stretch for maximum dynamic range to adapt to lighting • Adaptive filtering to smooth uniform and textured areas • Not clear whether she returns to original pixel values for filtering, or works with reduced-color image at this point. • Segment image using Mean Shift • references Comanicu & Meers paper (1st reading assmt)

  21. Finally, use Naming • After segmenting, then for each segmentation color, apply naming algorithm to find nearest prototype color and assign its name to that region of segmented image • Personal Note: I found the segmenting steps a little distracting here – they take focus away from use of color naming. Presumably the description of how she does the segmenting was to be rigorous. • The naming could be applied to any segmented image, regardless of how the segmentation was done.

  22. Questions • (AC) What exactly is being shown in table 1? • Distance measures for five colors of figure 1 • Dlab, Dhsl, thetaLABand thetaHLS • Author is trying to show that Dlab is not best measure. Would help if we had color copy of paper… • What is a color foci? • One of the 267 prototype colors of the NBS color dictionary • In the section about color naming results, they speak about coarse, medium and minute, why do they have three different levels • Context-specific level to apply naming language • Pictures typically described at coarse or medium • Green ball or light blue car • Specifics of an object, or differentiating objects, may require minute (full) language

  23. What is fig.2 trying to say? • Illustrates steps and terms used in section B. • What is meaning of equation number 5 in page 696? • Attempt to describe mathematically how to choose the blackest and whitest pixel for the contrast stretch/lighting correction. • What is hypothesis of graded (fuzzy ) membership ? • (?) analog to author’s levels (fundamental, coarse, medium, minute) •  What is color vocabulary? what is the difference between color naming and color vocabulary ?  • What is Munsell color order system and what made it widely used in spite of its lack of color vocabulary? • First (1905) color space separating Hue (color), value (brightness) and chroma (~saturation) • First attempt to define color measure with a meaningful difference measure. • Lack of vocabulary: limited number of colors. • Still in use because of entrenched applications (Brewers use it to define beer color, USGS uses it to define soil colors, etc.)

  24. I do not really understand why it is so important to name colors, instead of just calling them a number. • Automatic labeling of colors in images for DB matching, human understanding, etc.. See examples in section VI, Results, Discussion, Conclusions • How are prototypes (foci) decided when the metric computes the distance between input color and prototypes? (Section III, page4) • Prototypes are a given (input). Author worked from NBS dictionary of 267 colors, but notes that other color dictionaries could be used. • Could you please explain the algorithm in Designing the Color-Naming Metric on page 5? 

More Related