1 / 18

(BOCA)

Embedded Computer Architecture 2. (BOCA). Bijzondere Onderwerpen Computer Architectuur Block D Examples of Regular Dependency Graphs. The SFG of the AR filter. Streaming environment. Infinite impulse response. (y is on both side of the equation). Recall: Recurrent relations:.

tacey
Download Presentation

(BOCA)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Embedded Computer Architecture 2 (BOCA) Bijzondere Onderwerpen Computer Architectuur Block D Examples of Regular Dependency Graphs

  2. The SFG of the AR filter Streaming environment. Infinite impulse response. (y is on both side of the equation) Recall: Recurrent relations: Step 1: Expanding  Step 2: Just one operation Step 3: substitution of

  3. ai The SFG of the AR filter 0 1 2 3 sz,-1 sz,0 sz,1 sz,2 sz,3 xz yz=sz,3 sz,3 yz+1=sz+1,3 xz+1 aiis local constant sz+1,3 yz+2=sz+2,3 xz+2 sz-i-1,N-1 sz+2,3 yz+3=sz+3,3 xz+3 x, sz+3,3 yz+4=sz+4,3 xz+4 +, sz+4,3 sz,i-1 sz,i yz+5=sz+5,3 xz+5 sz+5,3 yz+6=sz+6,3 xz+6 Basic cell sz+6,3

  4. 0 1 2 3 sz,2 sz,1 sz,0 uz,2 uz,0 uz,1 xz,-1 vz,3 yz+1,3 xz+1,-1 vz+1,3 yz+2,3 xz+2,-1 vz+2,3 The four cells in a row vz-1,3 yz+3,3 xz+3,-1 vz+3,3 uz-1,0 uz-1,1 uz-1,2 yz+4,3 xz+4,-1 vz+4,3 a0 a1 a2 a3 x x x x yz+5,3 xz+5,-1 vz+5,3 + + + + sz,0 sz,1 sz,2 yz,3 xz,-1 yz+6,3 xz+6,-1 vz,3 uz,0 uz,1 uz,2 The SFG of the AR filter Separating the different variables, I/O and intermediate. All variables 2-dimensional. Removing superfluous variables. Results in: yz,3

  5. 0 1 2 3 sz,2 sz,1 sz,0 uz,2 uz,0 uz,1 xz,-1 yz,3 d =(1,0) vz,3 yz+1,3 xz+1,-1 vz+1,3 yz+2,3 xz+2,-1 vz+2,3 yz+3,3 xz+3,-1 vz+3,3 yz+4,3 xz+4,-1 vz+4,3 yz+5,3 xz+5,-1 vz+5,3 yz+6,3 xz+6,-1 The SFG of the AR filter The only possible scheduling vector in the direction of the I/O enumeration is: Possible scheduling vectors are: xz,-1 sz,i yz,3 vz,i uz,i (3,1) (1,0)

  6. 0 1 2 3 sz,2 sz,1 sz,0 uz,2 uz,0 uz,1 xz,-1 yz,3 d =(1,0) s =(1,0) vz,3 yz+1,3 xz+1,-1 vz+1,3 yz+2,3 xz+2,-1 vz+2,3 D0 D0 D0 D0 D1 D1 D1 yz+3,3 xz+3,-1 vz+3,3 D1 yz+4,3 xz+4,-1 vz+4,3 yz+5,3 xz+5,-1 vz+5,3 yz+6,3 xz+6,-1 The SFG of the AR filter SFG 1: x(z)-1 y(z)3 x(z+1)-1 y(z+1)3 y(z+2)3 x(z+2)-1 Not systolic. In one clock period N (=4) additions need to be done. At each clock tick an output is produced and an input is absorbed.

  7. 0 1 2 3 sz,2 sz,1 sz,0 uz,2 uz,0 uz,1 xz,-1 yz,3 d =(1,0) s =(4,1) vz,3 yz+1,3 xz+1,-1 vz+1,3 yz+2,3 xz+2,-1 vz+2,3 D1 D1 D1 D1 D4 D4 D4 yz+3,3 xz+3,-1 vz+3,3 D1 yz+4,3 xz+4,-1 vz+4,3 yz+5,3 xz+5,-1 x(z-1)-1 y(z-3)3 vz+5,3 y(z+1)3 x(z+3)-1 yz+6,3 xz+6,-1 y(z+5)3 x(z+7)-1 The SFG of the AR filter SFG 2: Systolic. In one clock period one multiply-add need to be done. At each N (=4) clock ticks an output is produced and an input is absorbed.

  8. x0 y0 k0 x1 y1 k1 x2 k2 y2 x3 k3 y3 Switch Switching The input-output relation can be described by: in which k(i) denotes the index of the input that is connected to the output yi Notice that xk(i) cannot directly be implemented by a simple function, so: recurrent relations:

  9. Switching j The input-output relation can be described by: x0 x1 x3 x2 x2 y0 x2 s0,-1=0 0 0 i x1 x1 x1 0 y1 s1,-1=0 in which k(i) denotes the index of the input that is connected to the output yi x0 x0 x0 x0 y2 s2,-1=0 x3 y3 s3,-1=0 0 0 0 Notice that xk(i) cannot directly be implemented by a simple function, so: recurrent relations:

  10. 0,3 0,0 0,1 0,2 1,0 1,2 1,3 2,0 1,1 2,2 2,3 3,0 3,1 3,2 3,3 2,1 Switching Recurrent relation: Globally recursive DG: x3 x0 x2 x1 k0 y0 0 k1 y1 0 k2 y2 0 Basic cell: xj k3 y3 ki 0 s3,-1 s3,0 s3,1 s3,2 s3,3 j =? The various SFG’s that can be derived from this DG do not lead to interesting implementations. 1 si,j si,j-1 0

  11. a b c d b c a d a b c d a b c d a b c d a b c d a b c d a b c d Time Division Multiplex Switching channel p = 2 channels 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 . . . . a b c d a b c d a b c d . . . . TDM stream frames frame q frame q+1 0 1 2 3 4 5 6 7 8 9 10 11 time t The sample at t belongs to the frame q and channel p with t = p + 4.q , and therefore and Switching: (routing)

  12. x y TDM switch 0 1 2 3 4 5 6 7 8 9 10 11 a b c d b c a d a b c d a b c d a b c d a b c d a b c d a b c d Time Division Multiplex Switching Switch function: or Q(p) describes the number of time units a sample from the input stream has to be delayed in order to arrive in time in the destination channel p in output stream y. Notice that this function allows broadcasting. This is not possible with the alternative switching function Example: Q(0) = 2 Q(1) = 1 Q(2) = 1 Q(3) = 0 Switching: (routing)

  13. Switch function: We assume that the values Q(t mod 4) are provided by a variable Rt . So Rt = Q(t mod 4). and Time Division Multiplex Switching y R TDM switch x This leads to the following recurrent relation: x0 y0 y1 x1 y2 y3 y0 Basic cell

  14. Switch function: We assume that the values Q(t mod 4) are provided by a variable Rt . So Rt = Q(t mod 4). and Time Division Multiplex Switching y R TDM switch x This leads to the following recurrent relation: Basic cell: xt-j Rt j =? 1 si,j st,j-1 0

  15. s0,2 s0,-1 0,1 0,2 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3 0,3 0,0 Time Division Multiplex Switching x0 DG: R0 y0 0 x1 R1 y1 0 x2 R2 From global to local gives 8 alternatives: s: 2x x: 2x R: 2x y2 0 x3 R3 y3 0

  16. s0,-1 s0,2 R0,1 x0 R0 y0 0,0 0,1 0,2 0,3 0 x1 R1 y1 1,0 1,1 1,2 1,3 0 x2 R2 allowed s y2 2,0 2,1 2,2 2,3 0 x3 R3 d 3,0 3,1 3,2 3,3 y3 0 Time Division Multiplex Switching Locally recursive DG: st,j Rt yt xt

  17. s0,-1 s0,2 R0,1 x0 R0 y0 0,0 0,1 0,2 0,3 0 x1 R1 y1 1,0 1,1 1,2 1,3 0 x2 s = (1,1) R2 y2 2,0 2,1 2,2 2,3 0 x3 R3 d 3,0 3,1 3,2 3,3 y3 0 Time Division Multiplex Switching Locally recursive DG: Every line indicates a register

  18. s d Time Division Multiplex Switching SFG: xt Rt D2 D D2 D2 D2 yt 0,0 0,1 0,2 0,3 D D D 0 D D D D x(t)1 R(t)0 s(t)-1 s(t)3 This is a nice systolic implementation. Designs like this were ‘invented’ and patented in the sixties and seventies. Here they are simply derived.

More Related