240 likes | 351 Views
The Magnetoelastic Paradox. M. Rotter , A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M. Loewenhaupt, IFP TU-Dresden, Germany B. Beuneu, LLB – Saclay, France M el Massalami, UFRJ, Brazil. Magnetostriction Measurements
E N D
The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M. Loewenhaupt, IFP TU-Dresden, Germany B. Beuneu, LLB – Saclay, France M el Massalami, UFRJ, Brazil
Magnetostriction Measurements • Magnetostriction in the Standard Model of Rare Earth Magnetism • The Magnetoelastic Paradox (MEP) • Experimental Evidence for the MEP in Gd Compounds • Application of Magnetic Fields - the case of GdNi2B2C • Outlook M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Magnetostriction Measurements Experimental Methods X-ray Powder Diffraction Capacitance Dilatometry • Anisotropic Effects on • Polycrystals (Expansion, • Symmetry-Changes) • bad resolution (10-4 in dl/l) • Good resolution (10-9 in dl/l) • 45 T Magnetic Fields - forced magnetostriction • requires single crystals 1cm Rotter et.al. Rev. Sci. Instr. 69 (1998) 2742 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdRu2Si2 (008) Gd Ru Si M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdRu2Si2 (202) (220) ? ? No sign of distortion of the tetragonal plane ! M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Spontaneous Magnetostriction STANDARD MODEL OF RARE EARTH MAGNETISM Microscopic Origin of Magnetostriction: Strain dependence of magnetic interactions Crystal Field Exchange T T L0 L=0, L0 T<TC(N) + T<TC(N) T>TC(N) e- „exchange-striction“ + Gd3+, S=7/2, L=0 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Exchange striction on a Square Lattice J1 J1 Ferromagnet: J1>0 dV/V<0 No distortion (dJ1/de) M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
J1 J1 Anti-Ferromagnet With small |J1| J2<0 dV/V=0 J2 J2 Tetragonal Distortion (dJ1/de) !!! J1 J1 THE MAGNETOELASTIC PARADOX Antiferromagnets with L=0 below TN: Symmetry breaking distortions are expected but have NOT been found Anti-Ferromagnet with NN exchange: J1<0 dV/V>0 No distortion (dJ1/de) .... but in ALL experiments: distortion <10-4 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdCuSn TN= 24 K q=(0 ½ 0) M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdAg2 TN= 22.7 K <TR1=21.2K M||[001] <TR2=10.8K M||[110] GdAu2 TN= 50 K q=(0.362 0 1) M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Gd3Ni Gd3Rh TN=112 K TN=100 K Large magnetostrictive effects on lattice constants – but NO distortion M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Volume Magnetostriction Spontaneous Magnetoelastic Effects in Gd Compounds A. Lindbaum, M. Rotter Handbook of Magnetic Materials Vol 14 (Buschow, Elsivier,NL) M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Anisotropic Spontaneous Magnetostriction Ferromagnet Antiferromagnet ε TC(N)[K] Spontaneous Magnetoelastic Effects in Gd Compounds A. Lindbaum, M. Rotter Handbook of Magnetic Materials Vol 14 (Buschow, Elsivier,NL) M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdNi2B2C ? TN= 20 K: M||[010] <TR= 14 K: M||[0yz] q = (0.55 0 0) small magnetostriction, therefore cap.-dilatometry .... M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdNi2B2C 2T||a 1.5T TN Orthorh. distortion ! 0.75T 0T 5 10 15 20 25 T (K) Thermal Expansion Forced Magnetostriction Da/a TN= 20 K: M||[010] <TR= 14 K: M||[0yz] q = (0.55 0 0) 10-4 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
GdNi2B2C .... FWHM determined by fitting distortion e=3x10-4 would lead to FWHM (204)+ 0.1° FWHM (211)+ 0.05° at H=0 no distortion can be found ? At H=0: Domains ? Powder Xray Diffraction M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
McPhase-theWorldofRareEarthMagnetism McPhase is a program package for the calculation of magnetic properties of rare earth based systems. Magnetization Magnetic Phasediagrams Magnetic Structures Elastic/Inelastic/Diffuse Neutron Scattering Cross Section www.mcphase.de M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
The magnetic Hamiltonian Isotropic exchange (RKKY,...) Classical Dipole Interaction Zeeman Energy M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Hmag + McPhase ? T=2 K
The Magnetoelastic Paradox for L=0.... demonstrated at GdNi2B2C Orthorhombic Distortion ? Exchange Striction Model Capacitance Dilatometry Standard Model of RE Mag ... McPhase Simulation M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
ToDo New Methods • Imaging of AFM domains • with XRMS GdNi2Ge2ab-plane T = 17 K 200 µm Moment direction • Anisotropy Measurements • by ESR Neutron Scattering • Transmutation of Gd • More Experiments • Powder X-ray Diffraction • Magnetic Neutron / X-ray Scattering • Dilatometry in high Fields • More Theory • Apply Standard model of RE Magnetism • Ab initio Calculation on MEP M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Normal thermal Expansion Anharmonicity of lattice dynamics anharmonicPotential Harmonic potential with Debye function + Small contribution of band electrons
Forced Magnetostriction Crystal Field Exchange - Striction L0 L=0, L0 H <0 H + e- H >0 + Gd3+, S=7/2, L=0 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006
Theory of Magnetostriction Crystal field Exchange with + M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006