100 likes | 305 Views
Sine Graph. We already know that. (x,y). Sin θ o =. r . r . Hyp. y. y. Using the unity circle we can re-define Sin θ o as. Opp. θ o. Opp. Hyp. x. Adj. Sin θ o =. The Sin e function is a circular function. We will now graph the Sine function. Since unity circle
E N D
Sine Graph We already know that (x,y) Sin θo = r r Hyp y y Using the unity circle we can re-define Sin θo as Opp θo Opp Hyp x Adj Sin θo = The Sine function is a circular function. We will now graph the Sine function Since unity circle r = 1 so Sin θo = y Created by Mr. Lafferty
Sine Graph 0.00 0.50 0.71 (x,y) 0.87 1.00 0.87 0.71 60o 45o 0.50 30o 60o 120o 30o 45o 150o 135o 0.00 30o 210o 60o 30o 45o 45o 270o 225o 60o 240o -0.50 300o 330o -0.71 315o -0.87 -1.00 -0.87 -0.71 -0.50 0.00 created by Mr. Lafferty
Sine Graph y 1 0.5 r = 1 θo 0o 90o 180o 270o 360o θ -0.5 -1 Sine Graph repeats every 360o created by Mr. Lafferty
Cosine Graph We already know that (x,y) Cos θo = r r Hyp y Using the unity circle we can re-define cos θo as Opp θo Adj Hyp x x Adj Cos θo = The Cosine function is a circular function. We will now graph the Cosine function Since unity circle r = 1 so cos θo = x Created by Mr. Lafferty
Cosine Graph 1.00 0.87 0.71 (x,y) 0.50 0.00 -0.50 -0.71 60o 45o -0.87 30o 60o 120o 30o 45o 150o 135o -1.00 30o 210o 60o 30o 45o 45o 270o 225o 60o 240o -0.87 300o 330o -0.71 315o -0.50 0.00 0.50 0.71 0.87 1.00 created by Mr. Lafferty
Cosine Graph y 1 0.5 r = 1 θo 0o 90o 180o 270o 360o θ -0.5 -1 Cosine Graph repeats every 360o created by Mr. Lafferty
Tangent Graph We already know that (x,y) Tan θo = r Hyp y y Using the unity circle we can re-define Tan θo as Opp θo Opp Adj x x Adj Tan θo = The Tangent function is a circular function. We will now graph the Cosine function Created by Mr. Lafferty
Tangent Graph y r = 1 θo 0o 90o 180o 270o 360o θ Tangent Graph repeats every 180o created by Mr. Lafferty