1 / 21

10.3 Inscribed Angles

10.3 Inscribed Angles. Geometry. Objectives/Assignment. Use inscribed angles to solve problems. Use properties of inscribed polygons . Using Inscribed Angles. An inscribed angle : an angle whose vertex is on a circle and whose sides contain chords of the circle

taini
Download Presentation

10.3 Inscribed Angles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 10.3 Inscribed Angles Geometry http://www.dgelman.com/powerpoints/#GEOM

  2. Objectives/Assignment http://www.dgelman.com/powerpoints/#GEOM Use inscribed angles to solve problems. Use properties of inscribed polygons.

  3. Using Inscribed Angles • An inscribed angle: an angle whose vertex is on a circle and whose sides contain chords of the circle • The arc that lies in the interior of an inscribed angle and has endpoints on the angle is called the intercepted arc of the angle. http://www.dgelman.com/powerpoints/#GEOM

  4. Theorem 10.8: Measure of an Inscribed Angle • If an angle is inscribed in a circle, then its measure is one half the measure of its intercepted arc. mADB = ½m http://www.dgelman.com/powerpoints/#GEOM

  5. m = 2mQRS = 2(90°) = 180° Ex. 1: Finding Measures of Arcs and Inscribed Angles • Find the measure of the blue arc or angle. http://www.dgelman.com/powerpoints/#GEOM

  6. Ex. 1: Finding Measures of Arcs and Inscribed Angles • Find the measure of the blue arc or angle. 100° m = ½ m ½ (100°) = 50° http://www.dgelman.com/powerpoints/#GEOM

  7. Theorem 10.9 • If two inscribed angles of a circle intercept the same arc, then the angles are congruent. • C  D http://www.dgelman.com/powerpoints/#GEOM

  8. Ex. 2: Finding the Measure of an Angle • It is given that mE = 75°. What is mF? • E and F both intercept , so E  F. • So, mF = mE = 75° 75° http://www.dgelman.com/powerpoints/#GEOM

  9. Ex. 3: Using the Measure of an Inscribed Angle • Theater Design. When you go to the movies, you want to be close to the movie screen, but you don’t want to have to move your eyes too much to see the edges of the picture. http://www.dgelman.com/powerpoints/#GEOM

  10. Ex. 3: Using the Measure of an Inscribed Angle • If E and G are the ends of the screen and you are at F, mEFG is called your viewing angle. http://www.dgelman.com/powerpoints/#GEOM

  11. Ex. 3: Using the Measure of an Inscribed Angle • You decide that the middle of the sixth row has the best viewing angle. If someone else is sitting there, where else can you sit to have the same viewing angle? http://www.dgelman.com/powerpoints/#GEOM

  12. Ex. 3: Using the Measure of an Inscribed Angle • Solution: Draw the circle that is determined by the endpoints of the screen and the sixth row center seat. Any other location on the circle will have the same viewing angle. http://www.dgelman.com/powerpoints/#GEOM

  13. Using Properties of Inscribed Polygons • If all of the vertices of a polygon lie on a circle, the polygon is inscribed in the circle and the circle is circumscribed about the polygon. • The polygon is an inscribed polygon and the circle is a circumscribed circle. http://www.dgelman.com/powerpoints/#GEOM

  14. Theorem 10.10 • B is a right angle if and only if AC is a diameter of the circle. http://www.dgelman.com/powerpoints/#GEOM

  15. Theorem 10.11 • A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary. • D, E, F, and G lie on some circle, C, if and only if mD + mF = 180° and mE + mG = 180° http://www.dgelman.com/powerpoints/#GEOM

  16. Ex. 4: Using Theorems 10.10 and 10.11 • Find the value of each variable. • AB is a diameter. So, C is a right angle and mC = 90° • 2x° = 90° • x = 45 2x° http://www.dgelman.com/powerpoints/#GEOM

  17. Ex. 4: Using Theorems 10.10 and 10.11 z° 120° • Find the value of each variable. • DEFG is inscribed in a circle, so opposite angles are supplementary. • mD + mF = 180° • z + 80 = 180 • z = 100 80° y° http://www.dgelman.com/powerpoints/#GEOM

  18. Ex. 4: Using Theorems 10.10 and 10.11 z° 120° • Find the value of each variable. • DEFG is inscribed in a circle, so opposite angles are supplementary. • mE + mG = 180° • y + 120 = 180 • y = 60 80° y° http://www.dgelman.com/powerpoints/#GEOM

  19. End of Geometry Presentation http://www.dgelman.com/powerpoints/#GEOM Begin Honors Geometry Example

  20. Ex. 5: Using an Inscribed Quadrilateral 2y° • In the diagram, ABCD is inscribed in circle P. Find the measure of each angle. • ABCD is inscribed in a circle, so opposite angles are supplementary. • 3x + 3y = 180 • 5x + 2y = 180 3y° 3x° 2x° To solve this system of linear equations, you can solve the first equation for y to get y = 60 – x. Substitute this expression into the second equation. http://www.dgelman.com/powerpoints/#GEOM

  21. Ex. 6: Using an Inscribed Quadrilateral Write the second equation. Substitute 60 – x for y. • 5x + 2y = 180. • 5x + 2 (60 – x) = 180 • 5x + 120 – 2x = 180 • 3x = 60 • x = 20 • y = 60 – 20 = 40 Distributive Property. Subtract 120 from both sides. Divide each side by 3. Substitute and solve for y. x = 20 and y = 40, so mA = 80°, mB = 60°, mC = 100°, and mD = 120° http://www.dgelman.com/powerpoints/#GEOM

More Related