1 / 19

Conceptual Design Review for PRIMA

Conceptual Design Review for PRIMA. Frosty Leo. CW Leo. PRIMA Astrometric Observations Polarization effects Technical Report AS-TRE-AOS-15753-0011. Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le Poole, J. Meisner, E. Bakker (Leiden), F. Delplancke, K. Scale (ESO).

taini
Download Presentation

Conceptual Design Review for PRIMA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conceptual Design Review for PRIMA Frosty Leo CW Leo PRIMA Astrometric Observations Polarization effects Technical Report AS-TRE-AOS-15753-0011 Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le Poole, J. Meisner, E. Bakker (Leiden), F. Delplancke, K. Scale (ESO) @Lorentz Center, Leiden on 29 Sep., 2004

  2. - OUTLINE - 1. Introduction Why instrumental polarization analysis? 2. Effects of phase error on astrometry Operation principle of the FSU 3. Polarization properties of PRIMA optics Basic concepts of polarization model

  3. Introduction • Why instrumental polarization analysis? • changes phase and amplitude VLT telescope, StS, base line, etc (telescope pointing, separation, station…) • the fringe sensor unit detects a wrong phase delay. • provide an error in astrometry what kind of error? (<p/100?)

  4. What we have to do? • Establish a strategy of analysis • Study the operation principle of FSU • Make a polarization model of VLTI optics Analysis • Fringe detection by FSU • polarization model analysis of VLTI optics • telescope, StS, base line optics • time evolution (as a function of hour angle) • difference between the ref. and the obj.

  5. The Operation Principleof the Fringe Sensor Unit Alenia Co., VLT-TRE-ALS-15740-0004

  6. The original ABCD Algorithm Complex Amplitude EA = -b(P1-P2) EB = b(S1+S2) EC = b(P1+P2) ED = -b(S1-S2) Identical polarization S1 = expi(kLopl,1) S2 = expi(kLopl,2) P1 = expi(kLopl,1) P2 = expi(kLopl,2 +p/2) k: wave number (k=2p/l) Lopl,i: optical path length at the station i

  7. The original ABCD Algorithm ABCD signals IA = 2|b|2{1+sin(kLopd)} IB = 2|b|2{1+cos(kLopd)} IC = 2|b|2{1-sin(kLopd)} ID = 2|b|2{1-cos(kLopd)} Visibility V = 1/2(IA+IB+IC+ID)=4|b|2 Phase delay f = kLopd = arctan(IA-IC/IB-ID) Lopd: optical path difference Lopd = Lopl,1 - Lopl,2 The phase delay can be measured with a simple way.

  8. The original ABCD Algorithm Complex Amplitude EA = -b(P1-P2) EB = b(S1+S2) EC = b(P1+P2) ED = -b(S1-S2) Different polarization S1 = S1expi(kLopl,1) S2 = S1expi(kLopl,2) P1 = P1expi(kLopl,1) P2 = P1expi(kLopl,2+p/2) k: wave number (k=2p/l) Lopl,i: optical path length at the station i

  9. The original ABCD Algorithm ABCD signals IA = 2|bP1|2{1+sin(kLopd)} IB = 2|bS1|2{1+cos(kLopd)} IC = 2|bP1|2{1-sin(kLopd)} ID = 2|bS1|2{1-cos(kLopd)} Visibility V = 1/2(IA+IB+IC+ID) = 2|b|2(|P1|2+|S1|2) Phase delay f = kLopd = arctan(IA-IC/IA+IC * IB+ID/IB-ID) Lopd: optical path difference Lopd = Lopl,1 - Lopl,2 The phase delay can be measured not affected by different polarization status between S and P.

  10. A Modified ABCD Algorithm Complex Amplitude EA = -b(P1-P2) EB = b(S1+S2) EC = b(P1+P2) ED = -b(S1-S2) Different polarization S1 = S1expi(kLopl,1) S2 = S2expi(kLopl,2) P1 = P1expi(kLopl,1+fS) P2 = P2expi(kLopl,2+fP+p/2) • Different polarization between beam 1 and 2 • phase fS = fS,2-fS,1, and fP = fP,2-fP,1 • amplitude S2≠S1, P2≠P1

  11. A Problem on the ABCD Algorithm ABCD signals IA = |b|2{P12+P22+2P1P2sin(kLopd+fP)} IB = |b|2{S12+S22+2S1S2cos(kLopd+fS)} IC = |b|2{P12+P22-2P1P2sin(kLopd+fP)} ID = |b|2{S12+S22-2S1S2cos(kLopd+fS)} The ABCD algorithm tells a wrong phase delay.

  12. A Modified ABCD Algorithm Get another sampling with a p/2(=l/4) step IA0 = |b|2{P12+P22+2P1P2sin(kLopd+fP)} IA1 = |b|2{P12+P22+2P1P2cos(kLopd+fP)} IC0 = |b|2{P12+P22-2P1P2sin(kLopd+fP)} IC1 = |b|2{P12+P22-2P1P2cos(kLopd+fP)} • only P-polarization is described above. • assume fixed P1 and P2

  13. A Modified ABCD Algorithm& Polarization Effects Phase delay FP = kLopd + fP = arctan(IA0-IC0/IA1+IC1) FS = kLopd + fS = arctan(IB0-ID0/IB1+ID1) The FSU may correct (detect) 1/2(FP+FS) = kLopd+1/2(fP+fS) • Instrumental polarization between two beams • cannot be principally corrected. • a phase delay of |fS-fP| still remains.

  14. Impact on Astrometry- Polarization Effects on Object - Visibility of the object V = <|ES,1+ES,2+EP,1+EP,2|2> = <|ES,1|2>+<|ES,2|2>+<|EP,1|2>+<|EP,2|2> +<ES,1ES,2*>+<ES,1*ES,2> +<ES,1EP,1*>+<ES,1*EP,1> +<ES,1EP,2*>+<ES,1*EP,2> +<ES,2EP,1*>+<ES,2*EP,1> +<ES,2EP,2*>+<ES,2*EP,2> +<EP,1EP,2*>+<EP,1*EP,2> ES,1 = S1expi(kLopl,1’) ES,2 = S2expi(kLopl,2’+fS’) EP,1 = P1expi(kLopl,1’+fSP’) EP,2 = P2expi(kLopl,2’+fSP’+fP’)

  15. Impact on Astrometry- Polarization Effects on Object - Cross correlation <ES,1ES,2*>+<ES,1*ES,2> = 2S1S2<cos(klopd’-fS’)> <ES,1EP,1*>+<ES,1*EP,1> = 2S1P1<cos(fSP’)> <ES,1EP,2*>+<ES,1*EP,2> = 2S1P2<cos(klopd’-fSP’-fP’)> <ES,2EP,1*>+<ES,2*EP,1> = 2S2P1<cos(klopd’+fSP’-fS’)> <ES,2EP,2*>+<ES,2*EP,2> = 2S2P2<cos(fSP’+fP’-fS’)> <EP,1EP,2*>+<EP,1*EP,2> = 2P1P2<cos(klopd’-fP’)>

  16. Impact on Astrometry- Polarization Effects on Object - Visibility of the unpolarized object V = <|ES,1+ES,2+EP,1+EP,2|2> = <|ES,1|2>+<|ES,2|2>+<|EP,1|2>+<|EP,2|2> +2<S1S2cos(klopd’-fS’)>+2<P1P2cos(klopd’-fP’)> Because of <cos(fSP’)>=0….unpolarized light Astrometry of the unpolarized object k(Lopd-Lopd’)+{(fS-fP)-(fS’-fP’)} = kLBLsinq+{(fS-fP)-(fS’-fP’)} … q: astrometry

  17. Impact on Astrometry- Summary - • Operation principle of FSU • Phase delay measurement not affected by polarization status of the reference. • A modified ABCD algorithm to calibrate instrumental polarization 2. Impact on astrometry • {(fS-fP)-(fS’-fP’)} gives error in astrometry • Similar beam combiner to the FSU is encouraged to science instrument

  18. Polarization Model Optics can work as a phase retarder or a polarizer So = JSi … S: Stokes parm, J: Jones matrix Sf = JNJN-1…J1 S* Grouping Jtel(Az(h), El(h), r, q, l, St): telescope optics JStS(r, q, l): star separator optics JBL(l, St): base line optics Model Sf = JBLJStSJtelS*

  19. Future Activities 1. Telescope optics (Jtel) time evolution: |fS-fP|(h, Dec, r, q) 2. Star separator optics (JStS) |fS-fP|(r) 3. Base line optics (JBL) |fS-fP|(St) 4. Color dependence fopd(l), Ix(l)@FSU, group delay

More Related