270 likes | 396 Views
18-19 Settembre 2006 Dottorato in Astronomia Università di Bologna. The Virial Theorem. Non-degenerate. log P. r 4/3. relativistic. M 2. M 1. r 5/3. Non-relativistic. log r. Degenerate Fermi gas. Collapse or ignition. Stellar core evolution. M<0.8 M ¤ 0.8<M/M ¤ <8 8<M/M ¤ <11
E N D
18-19 Settembre 2006 Dottorato in Astronomia Università di Bologna
Non-degenerate log P r4/3 relativistic M2 M1 r5/3 Non-relativistic log r Degenerate Fermi gas Collapse or ignition Stellar core evolution
M<0.8 M¤ 0.8<M/M¤<8 8<M/M¤<11 11<M/M¤<100 M>100 M¤ t>1/HO 15 Gyr<t<30 Myr 0.5<Mf /M¤<1.1 CO WD Thermonuclear SNe Progenitors t.10-30 Myr Mf =1.2-1.3 M¤ ONeMg WD T<10 Myr Mf =1.2-2.5 M¤ Fe (Ye.0.45) collapse NS or BH Core Collapse SNe Progenitors T = few Myr O (pair jnstability) (Ye=0.5) may or may not explode Stellar evolution
Summary: • Age of simple (stellar clusters) and complex (disk, bulge, halo) stellar populations. • Properties of nowadays extinct stellar populations. • Nature of barionic dark matter • Physics of high density matter • Amount of C/O in the He-exhausted core: hints for nuclear physics and theory of turbulent convection, as well as constraints for massive stars evolution and any type of SNe
M4: the deepest WD cooling sequence Data obtained with the WFPC2on board the HST(Hansen et al. 2002, Richer et al. 2002). The target is a region located 5’ E of the center of M4 and has been imaged through the: F606W(98 orbits x 1300 sec) F814W (148 orbits x 1300 sec) 12.7"0.7 Gyr.
Crystallization phase Convective coupling Debye cooling Age from luminosity functions WD cooling Different colors > different WD masses
WD Age from the CM-diagram:Collision Induced Abortion (CIA) and the blue hock Isochrones for DA WD
The observed WD Luminosity function Goodmatch between theory and observation Gooddescription of the high density matter behavior Bad: only a lower limit for the age can be set: 9 Gyr Good: smaller dependence on the distance
WDs are relicts of an extinct population: progenitors mass function: Synthetic NGC 6397 13 Gyr - Salpeter mass function
DA White Dwarf e- highly degenerate isothermal core C-O ions main energy reservoir e- non-degenerate envelope thermal insulator 98% C-O core (0.5-1.1 MÀ) 2% He mantel (<10-2 MÀ) 0.01% H envelope (<10-4 MÀ) no conduction
Thermal conductivity by degenerate electrons He-rich Mantel C/O Core From Prada Moroni & Straniero 2002
WD progenitors • Case B no-AGB • Case B1 Post-AGB with final thermal pulse • Case B2 classical Post-AGB • Case C Post RGB
He-burning: the competition between 3a->12C and 12C+a->16O+g 4He 12C 16O 5 M Z=0.02 Y=0.28
Jp Ex (keV) ECM (keV) 10957 0- 10367 4+ 3195 2685 2+ 9847 9580 1- 2418 8872 2- Q = 7.162 MeV Gamow peack energies 7117 1- 12C+4He 6917 2+ -45 -245 6130 3- 0+ 6049 0 0+ 16O level scheme Na<s,v> (10-15 cm3mol-1s-1) for T9=0.2
High rate 12C(a,g)16O Low rate White Dwarf interior: C and O profiles
low rate high rate cooling is affected by the internal chemical stratification
4 models for convection • same nuclear reaction rates • different convective scheme
16O MD WD internal composition is affected by core He burning convection
At the onset of the core collapse • e-+p à n+ne (10 MeV) • 56Fe+g à 13a+4n (124 MeV)