1 / 67

低電壓低功率電源轉換積體電路

低電壓低功率電源轉換積體電路. 陳建中 台北科技大學電子工程系. 簡歷. 台北工專五年制電機科畢業 (1981~1986) 高考電機類科及格 (1986) 電機技師 (1987) 中油高雄總廠電機工程師 (1988~1990) 台灣大學電機所碩士班畢業 (1990~1992) 台灣大學電機所博士班畢業 (1992~1995) 龍華科技大學電子系副教授 (1995~2004) 台北科技大學電子系副教授 (2004~). 大綱. 電源轉換電路的現況 電源轉換積體電路的應用 低電壓電源轉換電路的電路架構 低電壓電源轉換電路的電路的未來發展 電源晶片研究主題

takoda
Download Presentation

低電壓低功率電源轉換積體電路

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 低電壓低功率電源轉換積體電路 陳建中 台北科技大學電子工程系

  2. 簡歷 • 台北工專五年制電機科畢業(1981~1986) • 高考電機類科及格(1986) • 電機技師(1987) • 中油高雄總廠電機工程師(1988~1990) • 台灣大學電機所碩士班畢業(1990~1992) • 台灣大學電機所博士班畢業(1992~1995) • 龍華科技大學電子系副教授(1995~2004) • 台北科技大學電子系副教授(2004~)

  3. 大綱 • 電源轉換電路的現況 • 電源轉換積體電路的應用 • 低電壓電源轉換電路的電路架構 • 低電壓電源轉換電路的電路的未來發展 • 電源晶片研究主題 • 結語

  4. 電源轉換電路的現況

  5. 電源轉換積體電路的應用

  6. 電源轉換積體電路的應用

  7. 電源轉換積體電路的應用 • 電腦,筆記型電腦, 工作站,……… • 平面顯示器,軟性電子,……… • 手機,PDA, i-pod,…… • 照明設施,…… • 生醫電子,居家照護,…….. • 綠色產業,優質生活,…… • 需要用到電源的設施!!!....

  8. 低電壓電源轉換電路的電路架構 • 低電壓降電壓調整器 • (Low-Dropout Regulator) • 切換電容式電源轉換電路 • (Switched-Capacitor Power Converter) • 切換式電源轉換電路 • (Switching-Mode Power Converter) • 音頻與視頻放大器 • (Audio and Video Amplifiers)

  9. 電源轉換電路的重要規格 • Voltage and Current Rated • Output Ripple • Line Regulation • Load Regulation • Transient Response • Power Supply Rejection • Output Noise • Temperature coefficient

  10. 低電壓降電壓調整器的電路架構

  11. 效率

  12. 低電壓降電壓調整器的特性(1) • Advantage • Low Ripple • Low Noise • Small Chip Size • High Integration • No Inductor • Small Output Capacitor • Without Switching Noise

  13. 低電壓降電壓調整器的特性(2) • Disadvantage • Low Power Efficiency • Low Loading Current • Without Power Inversion Function • Without Voltage Boost Function

  14. 切換電容式電源轉換電路架構

  15. 效率 Vin: Input voltage Vout: Output voltage SQin: Total input charge during one switching period SQout: Total output charge during one switching period

  16. 切換電容式電源轉換電路特性(1) • Advantage • Easy Design • High Integration • With Step-Down and Step-Up Converter • With Power Inversion Function • No Inductor • Few External Devices

  17. 切換電容式電源轉換電路特性(2) • Disadvantage • Power Efficiency Dependent on Input and Output Voltages • Low Loading Current • Switching Noise • Output Ripple

  18. 切換式電源轉換電路架構

  19. 切換式電源轉換電路特性(1) • Advantage • Higher Efficiency • Higher Loading Current • Higher Power

  20. 切換式電源轉換電路特性(2) • Disadvantage • With Inductor • Higher Ripple • Higher Switching Noise • Larger Size • Higher EMI Noise

  21. 未來發展趨勢(1) • High Efficiency • Low Voltage and High Current • High Integration • Multi Outputs • Multi Phases • Multi Power Sources • Low Noise

  22. 未來發展趨勢(2) • Green Mode • Green Power • Portable Applications • Digital Controlled • Solution of System View • Power Management

  23. 電源晶片研究主題 • Low-Bounce LDO • Switched-Capacitor Converter • Switching-Mode DC-DC Converter • Class-D Amplifier • Battery Charger • AC-DC Booster for RFID

  24. A Capacitor-Free Fast-Transient-Response LDO

  25. A Capacitor-Free Fast-Transient-Response LDO

  26. Power Transistor Rm Gm A Capacitor-Free Fast-Transient-Response LDO

  27. A Capacitor-Free Fast-Transient-Response LDO (a) (b) The experimental results of proposed LDO; from top to bottom, the waveforms are output voltage Vout, and output current Iout (a) from 100mA to 10mA. ( horizontal scale: 500ns/div; vertical scale: 1V/div, and 50mA/div, from top to bottom.) ; (b) from 10mA to 100mA. ( horizontal scale: 500ns/div; vertical scale: 1V/div, and 50mA/div, from top to bottom.)

  28. A Capacitor-Free Fast-Transient-Response LDO (a) (b) The experimental results of proposed LDO; (a) the waveforms is the noise density of the output with light loading current; (b) the waveforms is the noise density of the output with 100mA loading current

  29. A Capacitor-Free Fast-Transient-Response LDO

  30. A Capacitor-Free Fast-Transient-Response LDO

  31. A Capacitor-Free Fast-Transient-Response LDO [8] Ka Nang Leung; Mok, P.K.T.; Sai Kit Lau: “A low-voltage CMOS low-dropout regulator with enhanced loop response,” Proceedings of the International Symposium on Circuits and Systems, Vol. 1, Page(s):I-385 - I-388, 23-26 May 2004. [9] Sao-Hung Lu; Wei-Jen Huang; Shen-Iuan Liu; “A Fast Settling Low Dropout Linear Regulator with Single Miller Compensation Capacitor,” Asian Solid-State Circuits Conference, Page(s):153 – 156, November 2005. [10] Dongpo Chen; Lenian He; Xiaolang Yan; “A Low-dropout Regulator with Unconditional Stability and Low Quiescent Current,” Proceedings of the International Conference on Communications, Circuits and Systems, Vol. 4, Page(s):2215 – 2218, June 2006.

  32. Switching-Mode DC-DC Converter

  33. Switching-Mode DC-DC Converter • On-Chip Current Sensing Circuit

  34. Switching-Mode DC-DC Converter • Hysteresis Current Controlled Circuit

  35. 2μs Switching-Mode DC-DC Converter

  36. Switching-Mode DC-DC Converter

  37. Switching-Mode DC-DC Converter [5] C. F. Lee and P. K. T. Mok ,” A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuit, Vol. 39,  NO.12,  pp. 3–14 Jan. 2004 [8] A. Barrado, A. Lázaro, R. Vázquez, V. Salas and E. Olías ,” The fast response double buck DC-DC converter (FRDB): operation and output filter influence,” IEEE Transactions on Power Electronics, Vol. 20,  NO 10,  pp.1261 – 1270, Nov. 2005 [11] H. Lee, P.K.T Mok. and W.H. Ki, ” A novel voltage-control scheme for low-voltage DC-DC converters with fast transient recovery,” The 2000 IEEE International Symposium on circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva, Vol. 1, No 28-31, pp. 256 - 259 , May 2000 .

  38. Switched-Capacitor Charger

  39. Switched-Capacitor Charger

  40. Switched-Capacitor Charger

  41. Switched-Capacitor Charger

  42. Switched-Capacitor Charger

  43. Switched-Capacitor Charger

  44. Switched-Capacitor Charger

  45. Switched-Capacitor Charger

  46. LDO-based Charger

  47. LDO-based Charger

  48. LDO-based Charger

  49. LDO-based Charger

  50. LDO-based Charger

More Related