530 likes | 694 Views
HIM-WCU workshop Hanyang U. Oct. 31 , 2009. Half- Skyrmion Matter & Quarkionic Matter. Byung -Yoon Park ( Chungnam Nat’l Univ.). Collaborators. M. Rho( Saclay , Hanyang Univ.) V. Vento(Valencia Univ.) D.-P. Min(Seoul National Univ.) H.-J. Lee( Chungbuk National Univ.). Contents.
E N D
HIM-WCU workshop HanyangU. Oct. 31, 2009 Half-Skyrmion Matter&Quarkionic Matter Byung-Yoon Park (Chungnam Nat’l Univ.)
Collaborators • M. Rho(Saclay, Hanyang Univ.) • V. Vento(Valencia Univ.) • D.-P. Min(Seoul National Univ.) • H.-J. Lee(Chungbuk National Univ.)
Contents • Skyrme Model ? • 2. Dense Skyrmion Matter • 3. Dense & Hot Skyrmion Matter • 4. Summary
Skyrmion Model topological soliton U(x) : mapping fromR3-{ }=S3toSU(2)=S3 8 BARYON ? 1960, T. H. R. Skyrme R ~ 1 f m M ~ 1.5 GeV
1935 Yukawa 1919 Rutherford1932 Chadwick 1960 Skyrme pion proton neutron pion proton neutron HadronicWorld(Skyrmionist’s Viewpoint)
SU(2) Collective Coord. Quantization N, D SU(3) collective Coordinate Quatization N, S, X, D, S*, X*,W
bound kaon Hedgehog Soliton N, S, X, D, S*, X*,W SU(2) collective Coordinate Quatization
bound D,D* Hedgehog Soliton N, S, Xc, D, S*, X*,Wc c c SU(2) collective Coordinate Quatization
Multi-Skyrmion system B=2 Torus B=3 Tetrahedron B=4 Cube B=5 with Dd2 sym B=6 with Dd4 sym B=7 Dodecahedron
Toroidal B=2 skyrmion 1988, Braaten & Carson, 1995, Leese, Manton & Schroers
Two skyrmions in the most attractive configuration. 2. Dense Skyrmion matter
Simple Cubic Skyrmion Crystal Y x z x LC o y y X z x x 1985, I. Klebanov U(x+LC,y,z) =ty U(x,y,z) ty (E/B)min=1.078 atLC=5.56 2. Dense Skyrmion matter
Half-Skyrmion Crystal z x LC y X 0 s=-1 s=+1 (Lb/2 above) 1987, A. S. Goldhaber & N. S. Manton U(x+LC,y,z) =tyU(x,y,z)ty + additional Symmetry w.r.t. s -s (E/B)min=1.076 at LC=5.56 2. Dense Skyrmion matter
Half-skyrmion? . ^ U = exp(iF(r)t r ) U =-1 p F(r) r 2. Dense Skyrmion matter
U =-1 U =-1 U =+1 2. Dense Skyrmion matter
U =+1 U =-1 U =-1 2. Dense Skyrmion matter
B=4 skyrmion 2. Dense Skyrmion matter
FCC Skyrmion Crystal Y z x z y o y LF X X x z z z=0 plane z=LF/2 plane 1989, L. Castellejo et al. & M. Kulger et al. Y 2. Dense Skyrmion matter
Half-Skyrmion CC Y Y z x z y o y LF X X z z x (E/B)min=1.038 at Lf=4.72 2. Dense Skyrmion matter
E/B vs. LF 2. Dense Skyrmion matter
<U>=<s> Chiral symmetry restoration in dense matter? 2. Dense Skyrmion matter
Pion in the dense baryonic matter? classical dense matter config. static soliton config. fluctuating pions 2. Dense Skyrmion matter
Skyrme Model(mp=0) \ Pion fluctuation in rB=0 space Vacuum : U=1 2. Dense Skyrmion matter
pdynamics(r=0) \ Skyrmion matter Pion fluctuations on top of the skyrmion matter + p-skyrmion matter interactions 2. Dense Skyrmion matter
pdynamics(r=0) \ 2. Dense Skyrmion matter
pdynamics(r=0) \ 2. Dense Skyrmion matter
pdynamics(r=0) \ In-Medium pion decay constant ? In-Medium pion mass ? 2. Dense Skyrmion matter
pion effective mass ! H.-J. Lee, B.-Y. Park, D.-P. Min, M. Rho, V. Vento, Nucl. Phys. A (2003) 2. Dense Skyrmion matter
Pseudogap? Chiral Symmetry Restoration p fp s U still remains on the Chiral Circle But <U>=0 Zarembo, hep-ph/0104305 2. Dense Skyrmion matter
Skyrme Lagrangian Trace Anomaly of QCD 2. Dense Skyrmion matter
Skyrme Lagrangian mc ~ 720 MeV, fc~240 MeV Ellis & Lanik, PLB(1985) Brown-Rho scaling, PRL(1992) 2. Dense Skyrmion matter
p V(c) fp s c fc <c> U cU <U> Vacuum (r=0) U=1 c=fc 2. Dense Skyrmion matter
Naive Estimation E/B=M2(L)c2+M4(L) +Mm(L)c3+V(c)L3 2. Dense Skyrmion matter
Naive Estimation 2. Dense Skyrmion matter
E/B <c>=0 phase / Chiral phase transition <c>=0 phase 2. Dense Skyrmion matter
<c>& <U> mp=0 <c> <s> cSB Phase Pseudogap Phase? cS Phase 2. Dense Skyrmion matter
Pseudogapstill remains? p Pseudogap Phase * fp p * fp s cS Phase p s cSB Phase s 2. Dense Skyrmion matter
? 2. Hot & Dense Skyrmion matter
Skyrmion Soup Main ingredients : pions Condiments : dilaton vector mesons Heat B.-Y. Park, H.-J. Lee, V. Vento, Phys. Rev. D80 (2009) 2. Hot & Dense Skyrme matter
Skyrmion from Instanton 1989, M. F. Atiyah & N. S. Manton time component of SU(2) gauge potential for the instanton field of charge N time-ordering constant matrix to make U approaches 1 at infinity constant rotation matrix 2. Hot & Dense Skyrmion matter
E/B vs. LF 2. Hot & Dense Skyrmion matter
B.-Y. Park, D.-P. Min, V. Vento & M. Rho, Nucl. Phys. A707(2002) 381 2. Hot & Dense Skyrmion matter
B.-Y. Park, D.-P. Min, V. Vento & M. Rho, Nucl. Phys. A707(2002) 381 2. Hot & Dense Skyrmion matter
Pion Gas! P = T4 E/B = 3PV p2 30 E/B=(M2(r)+3PV)c2+M4(r) +V(c)/r 1/3 2. Hot & Dense Skyrmion matter
Conclusion 2. Hot & Dense Skyrmion matter