730 likes | 864 Views
Efficient monitoring system for large-scale federated data storages Alexandre Beche < Alexandre.beche@cern.ch>. Outlines. F ederated data storages Efficient monitoring system Server instrumentation Monitoring dataflow Data visualization Beyond XRootD monitoring
E N D
Efficient monitoring system for large-scale federated data storages AlexandreBeche <Alexandre.beche@cern.ch>
Outlines • Federated data storages • Efficient monitoring system • Server instrumentation • Monitoring dataflow • Data visualization • Beyond XRootD monitoring • HTTP/WebDAV federation monitoring • WLCG Transfers Dashboard • Data mining • Summary Alexandre Beche - ITTF
Federated data storages Alexandre Beche - ITTF
Federated data storages • Aggregation of storage systems of any kind into a global namespace via a single access protocol Alexandre Beche - ITTF
Federated data storages • Aggregation of storage systems of any kind into a global namespace via a single access protocol • Federations provides read-only access to world-wide replicated data via virtual entry points (regional redirectors) Alexandre Beche - ITTF
Federated data storages • Aggregation of storage systems of any kind into a global namespace via a single access protocol • Federations provides read-only access to world-wide replicated data via virtual entry points (regional redirectors) • Technologies: XRootD (today) and HTTP/WebDAV (future) Alexandre Beche - ITTF
Federated data storages Global redirector Federated namespace Redirector Data server Client Alexandre Beche - ITTF
Federated data storages Global redirector Federated namespace A client wants to read a file Redirector Data server Client Alexandre Beche - ITTF
Federated data storages Global redirector Federated namespace Query the regional redirector to locate the file Redirector Data server Client Alexandre Beche - ITTF
Federated data storages Global redirector Federated namespace Redirector Data server Client Alexandre Beche - ITTF
Who is using the XRootD • 4 LHC VOs: • ALICE: Uses since many years • ATLAS: Federated ATLAS XRootD (FAX) • CMS: Any data, Anytime, Anywhere (AAA) • LHCb: Uses access protocol only • Talk focuses on AAA and FAX Alexandre Beche - ITTF
Large-scale Alexandre Beche - ITTF
Large-scale • Ongoing deployment (72%): • AAA: 1/1 T0, 3/7 T1, 39/51 T2 • FAX: 1/1 T0, 6/12 T1, 34/44 T2 • Constantly growing Alexandre Beche - ITTF
Large-scale • Ongoing deployment (72%): • AAA: 1/1 T0, 3/7 T1, 39/51 T2 • FAX: 1/1 T0, 6/12 T1, 34/44 T2 • Constantly growing Data traffic: 1.25GB/s Alexandre Beche - ITTF
Efficient monitoring system Alexandre Beche - ITTF
Why monitoring ? Understand data flows to estimate data traffic Provide information for efficient operations Identify access patterns and propose data placement strategies Alexandre Beche - ITTF
Federated data storagesMonitoring layer Global redirector Federated namespace Redirector Data server Client Alexandre Beche - ITTF
Federated data storagesMonitoring layer Global redirector Federated namespace Data server Monitoring collector Monitoring collector Alexandre Beche - ITTF
Federated data storagesMonitoring layer Global redirector Federated namespace Monitoring traffic: 300kB/s Data server Monitoring collector Monitoring collector Alexandre Beche - ITTF
Instrumentation on XRootD serverMonitoring streams Detailed stream Periodic summary data Alexandre Beche - ITTF
Instrumentation on XRootD serverMonitoring streams Detailed stream Aggregated XRootD Traffic per site Periodic summary data Low event rate Alexandre Beche - ITTF
Instrumentation on XRootD serverMonitoring streams High event rate Binary format required Non-blocking protocol Detailed stream Aggregated XRootD Traffic per site Periodic summary data Low event rate Alexandre Beche - ITTF
Instrumentation on XRootD serverMonitoring streams High event rate Binary format required Non-blocking protocol Map: Server, user, and file names mapped to id’s Trace: Per-file I/O information Detailed stream Aggregated XRootD Traffic per site Periodic summary data Low event rate Alexandre Beche - ITTF
Instrumentation on XRootD serverMonitoring streams High event rate Binary format required Non-blocking protocol Per-file information GLED* collector Map: Server, user, and file names mapped to id’s Trace: Per-file I/O information Detailed stream Aggregated XRootD Traffic per site Periodic summary data Low event rate * GLED Developped by MatevzTadel ( UCSD) Alexandre Beche - ITTF
XRootD monitoring dataflow real time Federation GLED Collector UDP Alexandre Beche - ITTF
XRootD monitoring dataflow real time asynchronous Federation AMQ GLED Collector Consumer raw AMQ* x5 stomp stomp UDP * AMQ operated by the CERN messaging team Alexandre Beche - ITTF
XRootD monitoring dataflow real time asynchronous Federation AMQ* x5 AMQ GLED Collector Consumer Raw Stats AMQ* x5 stomp stomp UDP 10 minutes * AMQ operated by the CERN messaging team Alexandre Beche - ITTF
XRootD monitoring dataflow real time asynchronous Federation AMQ GLED Collector Consumer Raw Stats AMQ* x5 stomp stomp UDP 10 minutes External applications WEB API Dashboard UI * AMQ operated by the CERN messaging team Alexandre Beche - ITTF
Transport Layer • Based on messaging technology (ActiveMQ): • Producer separated from the consumer • ~Real time or asynchronous consuming Alexandre Beche - ITTF
Transport Layer Peak 400 msg/s Average number of messages received per second ATLAS CMS • Based on messaging technology (ActiveMQ): • Producer separated from the consumer • ~Real time or asynchronous consuming Alexandre Beche - ITTF
Insertion to database • Load balanced collector • Horizontal scaling Consumer AMQ DB Consumer Alexandre Beche - ITTF
Insertion to database • Load balanced collector • Horizontal scaling Consumer AMQ DB Stompclt* * Developed by the CERN messaging team Alexandre Beche - ITTF
Insertion to database • Load balanced collector • Horizontal scaling Consumer AMQ DB Stompclt* Disk queue* * Developed by the CERN messaging team Alexandre Beche - ITTF
Insertion to database • Load balanced collector • Horizontal scaling Consumer AMQ DB Stompclt* DB inserter • Customizable inserter • Data enhancement • Filtering Disk queue* * Developed by the CERN messaging team Alexandre Beche - ITTF
Insertion to database • Load balanced collector • Horizontal scaling Consumer AMQ DB Simplevisor* Stompclt* DB inserter • Customizable inserter • Data enhancement • Filtering Disk queue* * Developed by the CERN messaging team • Modular architecture • Common building blocks (EPEL) • Reliable Alexandre Beche - ITTF
Database layer FAX 200 GB ~800M records AAA 200 GB ~800M records ORACLE 11g Alexandre Beche - ITTF
Database layer FAX 200 GB ~800M records AAA 200 GB ~800M records ORACLE 11g Daily insert 850 MB / 2M rows Alexandre Beche - ITTF
Database layer FAX 200 GB ~800M records AAA 200 GB ~800M records ORACLE 11g Daily insert 850 MB / 2M rows • Storage • Raw, statistics, metadata • Tables daily partitioned, no global indexes Alexandre Beche - ITTF
Database layer • Oracle is also used as a compute engine • Aggregation of unordered events • PL / SQL Alexandre Beche - ITTF
Database layer • Oracle is also used as a compute engine • Aggregation of unordered events • PL / SQL • Aggregation • Stateless: Full re-computation of touched bins each time • Compute stats from raw data in 10 min bins • Aggregate 10 min stats in daily bins Alexandre Beche - ITTF
Database layer Real challenge to scale up • Oracle is also used as a compute engine • Aggregation of unordered events • PL / SQL • Aggregation • Stateless: Full re-computation of touched bins each time • Compute stats from raw data in 10 min bins • Aggregate 10 min stats in daily bins Alexandre Beche - ITTF
Aggregation methods Transfers 2pm 3pm 4pm 5pm 6pm 7pm Alexandre Beche - ITTF
Aggregation methods Easy method Transfers 2pm 3pm 4pm 5pm 6pm 7pm Alexandre Beche - ITTF
Aggregation methods Easy method Transfers 2pm 3pm 4pm 5pm 6pm 7pm Alexandre Beche - ITTF
Aggregation methods Easy method Transfers 2pm 3pm 4pm 5pm 6pm 7pm Alexandre Beche - ITTF
Aggregation methods Easy method Transfers 2pm 3pm 4pm 5pm 6pm 7pm Adopted method • Both method equivalent if: • Small transfers or many transfers Alexandre Beche - ITTF
Storage investigation • Alternatives to ORACLE under investigation • Evaluates scaling options • Inline with the IT strategy • Promising results with ElasticSearch • Wait for the new aggregation system • Announced for a near future Alexandre Beche - ITTF
Web APIInterface to the DB External applications WEB API Stats Dashboard UI • All database access goes through API • Including our visualization tool • Execute a SQL query • Add topology and apply some filtering • Return data in JSON Alexandre Beche - ITTF
Visualization layerDashboard UI Rich web single-page user interface AJAX+JSON communication Alexandre Beche - ITTF