1 / 38

1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signals

Di-Jet Suppression and Multi-Mono-Jet Emission – - Signal of QGP or LXD- Black Holes at LHC H orst Stöcker GSI, Goethe+FIAS Frankfurt Inst. for Adv. Studies. 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signals LXD-BHs @ LHC: ALICE, ATLAS, CMS

tallis
Download Presentation

1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Di-Jet Suppression and Multi-Mono-Jet Emission – - Signal of QGP or LXD- Black Holes at LHC Horst Stöcker GSI, Goethe+FIAS Frankfurt Inst. for Adv. Studies 1LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signals LXD-BHs @ LHC: ALICE, ATLAS, CMS 3 Muliple Monojets from Hawking-Evaporating signal TeV-BHs! Source of Strangeness and Charm, Beauty and Truth+ SuSy-Partners Need EM-Cal in ALICE for better > 100 GeV reach in pt 4 TeV-BHs explode in QCD+SuSy-Knudsen-plasma? 5 Stable charged TeV-BH-Remnants? Observe TRACK in TPC! 6 BH- Production 1000*enhanced in Pb+Pb event@ 5.5 ATeV Horst Stöcker, Heidelberg 2009

  2. Thanks to • Ben Koch (U Santiago, Chile) • Ulrich Harbach (ITP, Germany) • Christoph Rahmede (Sissa, Italy) • Thomas Burschil (ITP, Frankfurt) • Martin Kober (ITP, Frankfurt) • Sabine Hossenfelder (Stockholm) • Stefan Hofmann (LMU, München) • Marcus Bleicher (FIAS + ITP, Germany) Based on: Phys.Rev.D66:101502,2002, Phys.Lett.B548:73-76,2002, J.Phys.G28:1657-1665,2002, Phys.Lett.B566:233-239,2003, Int.J.Mod.Phys.D13:1453-1460,2004, JHEP 0510:053,2005,… Horst Stöcker, Heidelberg 2009

  3. A BH B X |A> + |B> --> BH + X BH-Production ProbabilitiesLHC =Black Hole Factory? Problem: No fundamental scattering operator for Model for cross section: impact parameter b Parton model: fold structure fct. With BH-“formfactor”! Horst Stöcker, Heidelberg 2009

  4. # of black holes predicted L. Hewett, B. Lillie and T. G. Rizzo, arXiv:hep-ph/0503178 Horst Stöcker, Heidelberg 2009

  5. Black Holes at Colliders • BH created when two particles of high enough energy pass within ~ rs . Eardley, Giddings, PRD (2002) Yoshino, Nambu, PRD (2003) Dimopoulos, Landsberg, PRL (2001) • Large Hadron Collider: ECOM = 14 TeV pp BH + X • LHC may produce 100 of black holes per second, starting ~ 2008 109 BH per year LHC: S. Hossenfelder, M.B., et al., PRD 66 (2002)Tevatron: M. Bleicher et al., PLB548 (2002) Horst Stöcker, Heidelberg 2009

  6. Horst Stöcker, Heidelberg 2009

  7. Production probabilities of BH per pp-event: NANOBARN! 1000x increased per central Pb+Pb event: Ncoll=200, b<3fm! Pb+Pb p+p * ** *Bleicher, Hofmann, Hossenfelder, Stoecker ** Hossenfelder Phys.Lett.B598:82-98,2004 Phys.Lett. B548:73-76,2002 Horst Stöcker, Heidelberg 2009

  8. Pb+Pb vs pp Luminosity difference: 1027 vs 1034 /cm/s Horst Stöcker, Heidelberg 2009

  9. OBSERVATION of LXD-BHs in pp • Suppression of QCD-Di-Jets @ pt >Mf ~ 1TeV • Emission of Multiple Mono-Jets (Hawking-Rad) • viscous Kapusta-Hawking SM-Plasma T ~ 1TeV • Charged Stable Black Hole Remnant BHR: • Stiff Track in TPC Horst Stöcker, Heidelberg 2009

  10. High pT Di-Jet -Suppression in p+p at LHC: Di- Jets with M> Mf vanish behind Schwarzschild radius Rh High pT ~ Mf sppression in AB -> Jet(pT)+X => #Jet(pT) << #Jet(pT) in LXDs in D=4 => 1/pt physics: hidden behind horizon! LHC - where are my Di-Jets gone? Horst Stöcker, Heidelberg 2009

  11. IF (LXD- Black Holes at 14 TeV in pp@ LHC).THEN. (NO High pT- events, No 2*500GeV Di-Jets@LHC QCD d =7 QCD • LXD-BHs => No Di-Jets w. M=E1+E2 > 1 TeV ALICE can differentiate LXD- BHs from QCD- Background! (see T. Humanic, ALICE Int. Note) Horst Stöcker, Heidelberg 2009

  12. Jet event in e+e-collision ALICE P+P: no-di-jet events! Hard Scattering: NO Di-Jets, but BHs ! STAR p + p  jet event See Multi-Mono-Jets in LHC energy p+p & Au+Au ? Horst Stöcker, Heidelberg 2009

  13. Signatures • Event shapes (thermal emission) • Modifies hadron spectra • Exotic particle production • Cut-off in pT spectra • Remnants? Horst Stöcker, Heidelberg 2009

  14. Decay - "Balding phase":BH gets rid of its hair mainly via gravitational radiation  not visible in detector - Hawking phase: decay mainly into standard-model particles. - R. Emparan, G. T. Horowitz and R. C. Myers Phys. Rev. Lett. 85, 499 - S. B. Giddings and S. Thomas, Phys. Rev. D 65 056010 (2002). - C. M. Harris, M. J. Palmer, M. A. Parker, P. Richardson, A. Sabetfakhri and B. R. Webber, [arXiv:hep-ph/0411022]... - Final state... Horst Stöcker, Heidelberg 2009

  15. Final state - Two possible scenarios: 1. - Hawking radiation continues until MBH....Mf and then performs something like a final decay or 2. - Rapid decay slows down to form eventually quasi stable remnant - Y. B. Zel’dovich, in: ”Proc. 2nd Seminar in Quantum Gravity”, edited by M. A. Markov and P. C. West, Plenum, New York (1984). - R. J. Adler, P. Chen and D. I. Santiago, Gen. Rel. Grav. 33, 2101 (2001) - J. D. Barrow, E. J. Copeland and A. R. Liddle, Phys. Rev. D 46, 645 (1992). - S. Coleman, J. Preskill and F. Wilczek, Mod. Phys. Lett. A6 1631 (1991). - S. Hossenfelder, M. Bleicher, S. Hofmann, H. Stocker and A. Kotwal, Phys. Lett. B 566, 233 - T.G. Rizzo, hep-ph/0601029 Horst Stöcker, Heidelberg 2009

  16. Charybdis*: (Scylla) Pythia 1. Generate black hole 2. Hawking decay according to modified Planck statistics 3. No final decay,but stop as soon as MBH-MR<1GeV 4. Check charges, and Pythia does particle evolution etc. 1. Generate black hole 2. Hawking decay according to Planck statistics 3. As soon as MBH<Mf perform final n-body decay on remaining black hole 4. Check charges, and Pythia does particle evolution etc. *C. M. Harris, P. Richardson and B. R. Webber, JHEP 0308, 033 (2003) [arXiv:hep-ph/0307305] Horst Stöcker, Heidelberg 2009

  17. 2 Micro- Black Hole - emitts very hard multiple Monojets due to microcanonic Hawking- Radiation of SMP + SuSy-Partners in Brane (3+1Dim): S,C,B,T - abundant! + Kaluza- Klein Tower excitations into BULK (d- Dim) Horst Stöcker, Heidelberg 2009

  18. Hadron spectrum • Get hadron spectrum from parton fragmentation • Charged hadrons from BHsexceed pQCD at high pT • Bump near Hawking temperature From I. Sarcevic et al (2007) Horst Stöcker, Heidelberg 2009

  19. TeV- Mono-Jet Production probabilities much bigger than in QCD! * (@14TeV) ** * Hossenfelder, Hofmann, Bleicher, Stöcker: Phys.Rev.D66:101502,2002 **Lönnblad, Sjödahl: hep-ph/0505181 Horst Stöcker, Heidelberg 2009

  20. Exotic particle production Gluino sQuarks SM MPl=1 TeV, MBH=3 TeV MPl=2 (3) TeV, MBH=5 TeV Chamblin, Cooper, Nayak PRD (2004)see also Landsberg PRL (2002) MPl=3 (5) TeV, MBH=7 TeV d=4 Horst Stöcker, Heidelberg 2009

  21. T~1 TeV: Kapusta-Hawking-Knudsen-Plasma • Extreme Hawking energy density in p+p! • QGP in Pb+Pb • Multiple hard Jets with hundreds of GeV each! • Heavy Quark Jets in „Kapusta-Hawking Plasma“? • Knudsen Gas: No Thermalization!? • Formation of HOT plasma? VISCOSITY! • T > 100 GeV: 1000 * Tcrit-QCD • Hydrodynamic Detonation? Viscous Blast Wave? • „Soft“, Thermal emission rates • Strange, Charm, Bottom, Truth abundant! • + Electroweak-, Higgs- and SUSY particles! Horst Stöcker, Heidelberg 2009

  22. Modified decay in the presenceof quasi stable black hole Corrections to the standard hawking evaporation should be presumably suppressed by factors of MR/MBH therefore the entropy of a micro-black hole can be written as Micro-canonically the mass evolution is given by This gives only in the limit M>>MR the macro canonical Hawking rate Horst Stöcker, Heidelberg 2009

  23. 4. Stable Mp-BHRemnant - left after Evaporation? - GUP & QG motivation for BHRs: M. Maziashvili Phys. Lett. B635 (2006) 232 R. Adler, P. Chen, D Santiago Gen.Rel.Grav. 33 (2001) 2101-2108- BHR in Einstein-Gauss-Bonnet string gravity: S. Alexejev et al, Class.Quant.Grav. 19 (2002) 4431 - BHR from Stringy corr. Einst.-Hilbert action, Lovelock higher-order curvature: T. Rizzo, JHEP 0506 (2005) - AdS/CFT and BHRs: R. Casadio, hep-ph/0304099   motivates evaporation rate: Stable BH-Remnants“BHR” Horst Stöcker, Heidelberg 2009

  24. Remnants • Include remnant in Charybdis by a modification of the emission spectrum • Try direct measurement of heavy charged remnant  Ashes of the black hole MPl=1TeV, Mrem=1 TeV Koch, Hossenfelder, Bleicher (2007) See also Bonano, Reuter (Renormalized coupling constant) and Rizzo et al (Modified gravity) Same effect, different origin Horst Stöcker, Heidelberg 2009

  25. Microcanonical Hawking- Evaporation Produces Multiple Mono- Jets Relics: Metastable LXD-BHs at LHC Hossenfelder, Koch, Bleicher Hard Mono-Jets Emitted . . . . . . . . . . Horst Stöcker, Heidelberg 2009

  26. Microcanonical Hawking-Evaporati. With Mf-BHR leftover: BHR=1 Track in ALICE-TPC@LHC Plus multiple jets or plasma Hard Mono-Jets Emitted . . . . . . . . . . Numerical Simulation Koch, Hossenfelder, Bleicher: JHEP 10 (2005) 053 See also Hossenfelder, Bleicher, Hofmann, Stoecker, Ashutosh, Kotwal Phys.Lett.B566.233-239 (2003) BHR Horst Stöcker, Heidelberg 2009

  27. Black Hole Remnants in Large Extra DimensionsSabine Hossenfelder, M. Bleicher, S. Hofmann, Horst Stöcker, Ashutosh Kotwal Phys.Lett.B566(2003)233 BHR Horst Stöcker, Heidelberg 2009

  28. Events with BHRemnants in pt-spectra - distinguishable from disappearing BHs?Quenching!! soft Quench Koch, Hossenfelder, Bleicher: JHEP 10 (2005) 053 Horst Stöcker, Heidelberg 2009

  29. Results Quasi stable black holes distinguishable from complete BH decay: B.Koch, M.Bleicher and S.Hossenfelder, ``Black hole remnants at the LHC,'' JHEP 0510 (2005) 053 Horst Stöcker, Heidelberg 2009

  30. Results - A charged remnant could be seen in the detector directly don´t discard it ;-) S.Hossenfelder, B.Koch and M.Bleicher, ``Trapping black hole remnants,'' arXiv:hep-ph/0507140. Horst Stöcker, Heidelberg 2009

  31. - A completely decaying BH requests careful triggering and selection of observables: T. Humanic, "Extra-dimensional physics with p+p in the ALICE Experiment„ Alice-Internal note- (preliminary) Horst Stöcker, Heidelberg 2009

  32. Signatures for black holes at the LHC Horst Stöcker, GSI Helmholtzzentrum FiAS + Institut für Theoretische Physik Goethe Universität Frankfurt Horst Stöcker, Heidelberg 2009

  33. Focus 32/1999 Horst Stöcker, Heidelberg 2009

  34. Do mini black holes pose a risk? Koch, Bleicher, Stoecker, Phys.Lett.B (2009)see also Giddings, Mangano PRD (2008) Horst Stöcker, Heidelberg 2009

  35. The main line of the argument • Black holes have been produced by cosmic rays over the whole history of the earth (sun) • If the earth still exists, there is no risk • Potential problem: black holes from cosmic rays may move through the earth, whileblack hole at LHC are produced at rest • Solution: Calculate if, black holes from CR events would also be stopped in the earth Horst Stöcker, Heidelberg 2009

  36. Effective charge of black hole on its way through the earth • The black hole absorbs charge randomly, i.e. random walk in charge space • Doing this the black hole acquires an average charge of |QBH|>0.16e • The energy loss of a charged particle can be calculated from the well known and well tested Bethe Bloch formula Horst Stöcker, Heidelberg 2009

  37. Result • Using parameters for the earth, black holes with an effective charge of |QBH|>0.4e could be stopped inside the earth (this limit decreases by orders of magnitude if pair production is included!) • However, for the Sun one obtain a limit of |QBH|>0.04e to stop a black hole The existence of the Sun proves that black holes pose no thread Horst Stöcker, Heidelberg 2009

  38. Conclusions • If black holes are produced at LHC, the chance of their observation is excellent • They will result in- a modified hadron spectrum- create new particles- show clearly distinguishable event characteristics- and might even leave detectable remnants • However, further detailed numerical studies will be necessary to provide quantitative guidance Current lower bounds Horst Stöcker, Heidelberg 2009

More Related