1 / 50

Testing Product Lines of Industrial Size: Advancements in Combinatorial Interaction Testing

Testing Product Lines of Industrial Size: Advancements in Combinatorial Interaction Testing. Martin Fagereng Johansen PhD Thesis Defense, 2013-11-05. Industrial Motivation. TOMRA's Reverse Vending Machines Finale's Financial Reporting Systems ABB's Configurable Safety Module

tam
Download Presentation

Testing Product Lines of Industrial Size: Advancements in Combinatorial Interaction Testing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Testing Product Lines of Industrial Size:Advancements in Combinatorial Interaction Testing Martin Fagereng Johansen PhD Thesis Defense, 2013-11-05

  2. Industrial Motivation

  3. TOMRA's Reverse Vending Machines • Finale's Financial Reporting Systems • ABB's Configurable Safety Module • Eclipse IDEs – Free and Open Source

  4. About the Eclipse IDE • Initiated and funded by IBM • Widely used by software engineers to develop software • Major competitor to Microsoft Visual Studio • Many third-party extensions

  5. Eclipse IDE – v3.7.0 (Indigo) – An Example of a Software Product Line The problem: Can we gain confidence that any product will work?

  6. Which products are possible? → model its features and their relationships in a→ feature model: 356,352 possibilities!

  7. Today: A Test Suite for Each Feature http://wiki.eclipse.org/Eclipse/Testing http://archive.eclipse.org/eclipse/downloads/drops/R-3.7-201106131736/testResults.php

  8. Overview

  9. Sampling

  10. Faulty Features • Unit tests may find faults inside a single feature. • n test suites required for a product line with n features. • What about faulty cooperation between features? • What if they interact incorrectly?

  11. Interaction Faults • 2-wise interaction fault • reproducible by including 2 specific features • the others do not matter

  12. Interaction Faults • 3-wise interaction fault • reproducible by including 3 specific features • the others do not matter

  13. Empirics Show: • Kuhn et al. 2004: • Almost all bugs can be attributed to the interaction of a few features.

  14. Covering Arrays • Only a few products are needed to cover all simple interactions. • i.e. testing a few well-selected products might reveal almost all bugs • Examples (2-wise testing): • For the "e-shop product line" with 287 features: 21 products • For the Linux kernel with almost 7,000 features: 480 products

  15. ?

  16. Configuring Feature Models • Feature models can be solved by configuration: • …or by satisfying the corresponding Boolean formula: • R ∧ (A ⇒ R) ∧ (B ⇒ R) ∧ (C ⇒ A) ∧ (D ⇒ A)∧ (C ∨ D) ∧ ¬(C ∧D) ∧ (E ⇒ B) ∧ (F ⇒ B) ∧ (E ∨ F) ∧ (D ⇒ E) • e.g. R = 1, A = 1, B = 1, C = 0, D = 1, E = 1, F = 0 • The SAT problem.

  17. State of the art argument • SAT is the classic NP-complete problem. • worst-case analysis (Cook 1971) • Configuring basic feature models • i.e., finding a single product of a product line • SPLE-SAT – Software Product Line Engineering Boolean SATisfiability • Includes only feature models that occur in SPLE. • Argument • SPLE-SAT = SAT, and SAT is NP-complete • i.e., SPLE-SAT is NP-complete • i.e., SPLE-SAT is impractical(unless P=NP, due to Cobham's thesis) • i.e. because sampling involves SPLE-SAT, sampling is impractical.

  18. Our Argument • If SPLE-SAT is impractical: • Configuring a feature model is impractical. • i.e., testing product lines is of no concern. • If we cannot find any products, why care about their quality? • However, if we have a product line with products: • Finding them were practical. • We care about their quality. • i.e., SPLE-SAT is practical. • Also: • If a feature model is too hard to configure then it cannot serve its purpose as an SPLE artifact. • A customer cannot use it to customize a product to their needs. • i.e., SPLE-SAT is practical.

  19. Empirical Investigation: SAT time • SPLE-SAT is very quick. • Even for the largest models. • E.g. The Linux Kernel • Routinely configured by hand.

  20. Conclusions as Venn Diagrams • State of the Art Conclusion: • Our Conclusion: SAT = SPLE-SAT Hard SAT

  21. ?

  22. ?

  23. Sampling: Impractical in Practice

  24. A New, Efficient Algorithm: ICPL ICPL 2

  25. What makes ICPL quick? • Based on a greedy polynomial time approximation algorithm (PTAS) for the set covering problem (SCP) • Chvátal's algorithm (Chvátal 1979) • We know SPLE-SAT is quick. • Strategically run SPLE-SAT often and infer as much as possible. • Utilize modern hardware. • large amounts of memory (128 GB) • truly parallel processing (64 concurrent executions) • Separate out data-parallel sub-algorithms. • ++

  26. Comparison • State of the art: • Our new algorithm (ICPL):

  27. Comparison

  28. ?

  29. Market-focused Sampling

  30. Industrial Context • TOMRA's Reverse Vending Machines:

  31. Feature Model of TOMRA RVM 435,808 possibilities!

  32. The 12 Products in Their Test-lab

  33. Full Sampling was Too Costly • The problem • Too many test-products • Their Need: • Optimize the selection of 12 products. • Our answer: • Model the market situation. • Select the most relevant products according to that model.

  34. Our Model of the Market Situation:"Weighted sub-product lines"

  35. Better Coverage with 12 Products coverage All Inter-actionsInteractions of market t

  36. ? ?

  37. Interactions With a 3-wise covering array, we get a few products with: With a 2-wise covering array, we get a few products with: TestCSV succeeds for both. Does CSV work without GEF? CSV works with and without Web Tools. Does CSV work with CDT? Etc…

  38. What Eclipse Tests Today: 2-Wise Covering Array:

  39. Test Results – Pair-wise Testing

  40. Possible Causes • Two (or more) features … • access the same resource • have overlapping GUI elements • SWTBot tests • have dependencies that interact wrongly • wait for each other (deadlock) • +++

  41. Potential Faults Found using Existing Test Cases • Strategic application of existing tests revealed potential faults. • Relatively inexpensive to apply. • Raises confidence on success. • Such a large scale, fully reproducible and documented application of a product line testing technique is not found in the existing literature.

  42. Two bugs identified with 5 test cases. Also Applied to the ABB-case

  43. ? ?

  44. SPLCATool SPLCATool SPLCATool SPLCATool

  45. Future Work • Further empirical study of faults in software product lines. • Complete application to the Eclipse IDE • With test cases for all features; it is possible today! • A good source of further empirics. • A good basis of further improvements. • Even quicker algorithms for covering array generation. • Less memory usage. • Higher degree of parallelism. • Improved test allocation. • Based on specification, model or implementation. • Based on meta-data such as versions.

  46. Summary • SPLE-SAT was investigated. • Realistic feature models are readily configurable. • Encourages the investigation into faster algorithms. • A fast algorithm for sampling. • Enables the use of sampling for product line testing. • Theory and algorithms for market-focused sampling. • One approach for automatic allocation of test cases. • Enables the production of a test report from (1) an implementation, (2) a test case collection and (3) feature model. • An automatic and scalable technique for software product line testing supported by free, open source tooling. • SPLCATool

More Related