1 / 15

5.1 Perpendiculars and Bisectors

5.1 Perpendiculars and Bisectors. Geometry Mrs. Spitz Fall 2004. Objectives:. Use properties of perpendicular bisectors Use properties of angle bisectors to identify equal distances.

Download Presentation

5.1 Perpendiculars and Bisectors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5.1 Perpendiculars and Bisectors Geometry Mrs. Spitz Fall 2004

  2. Objectives: • Use properties of perpendicular bisectors • Use properties of angle bisectors to identify equal distances.

  3. If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. If CP is the perpendicular bisector of AB, then CA = CB. Theorem 5.2 Perpendicular Bisector Theorem

  4. If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. If DA = DB, then D lies on the perpendicular bisector of AB. Theorem 5.3: Converse of the Perpendicular Bisector Theorem

  5. Assignment • page 267-268 #1-25 All

  6. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Given: CP is perpendicular to AB. Prove: CA≅CB

  7. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given: CP is perpendicular to AB. Prove: CA≅CB

  8. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Given: CP is perpendicular to AB. Prove: CA≅CB

  9. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Given: CP is perpendicular to AB. Prove: CA≅CB

  10. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Definition right angle Given: CP is perpendicular to AB. Prove: CA≅CB

  11. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Definition right angle SAS Congruence Given: CP is perpendicular to AB. Prove: CA≅CB

  12. Statements: CP is perpendicular bisector of AB. CP  AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Definition right angle SAS Congruence CPCTC Given: CP is perpendicular to AB. Prove: CA≅CB

  13. If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle. If mBAD = mCAD, then DB = DC Theorem 5.4 Angle Bisector Theorem

  14. If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle. If DB = DC, then mBAD = mCAD. Theorem 5.4 Angle Bisector Theorem

  15. SOLUTION:

More Related