1 / 10

Axisymmetric Wheel

Workshop 1 Array Parameters. Axisymmetric Wheel. 1. Array Parameters Axisymmetric Wheel. Determine the standard deviation of the von Mises stress distribution in a steel wheel spinning at 7500 rpm. Given: A database file containing an axisymmetric model with material properties defined.

tameka
Download Presentation

Axisymmetric Wheel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Workshop 1 Array Parameters Axisymmetric Wheel

  2. 1. Array ParametersAxisymmetric Wheel • Determine the standard deviation of the von Mises stress distribution in a steel wheel spinning at 7500 rpm. • Given: A database file containing an axisymmetric model with material properties defined. October 30, 2001 Inventory #001572 W1-2

  3. 1. Array ParametersAxisymmetric Wheel 1. Enter ANSYS in the working directory specified by your instructor using “axiwheel” as the jobname. 2. Resume the “axiwheel.db1” database file. 3. Constrain the bottom line in UY direction. • Main Menu > Soluion > -Loads- Apply > Displacement > On Lines • Or issue: /SOLU DL,1,,UY October 30, 2001 Inventory #001572 W1-3

  4. 1. Array ParametersAxisymmetric Wheel 4. Apply a 7500-rpm angular velocity about the Y-axis. Since ANSYS requires radians/second units, we will use APDL to convert 7500 rpm to rad/sec. • Type in the Input window (or in the Scalar Parameters dialog): rpm=7500 pi=3.142 w=2*pi*rpm/60 • Main Menu > Solution > -Loads- Apply > Other > Angular Velocity … • OMEGY = w, then [OK] • Or issue: OMEGA,,W 5. Save the database and solve. October 30, 2001 Inventory #001572 W1-4

  5. 1. Array ParametersAxisymmetric Wheel 6. Plot von Mises stress contours in POST1 (general postprocessor). 7. If desired, expand the axisymmetric solution to 270°. • Utility Menu > PlotCtrls > Style > Symmetry Expansion > 2-D Axisymmetric … • Expansion amount = 3/4 expansion • [OK] • Utility Menu > PlotCtrls > Pan,Zoom,Rotate… • [ISO] • Or issue: /EXPAND,27,AXIS,,,10 /VIEW,1,1,1,1 /REPLOT October 30, 2001 Inventory #001572 W1-5

  6. 1. Array ParametersAxisymmetric Wheel 8. We will use the element table and array parameters to calculate the standard deviation of von Mises stresses. First load equivalent stresses into the element table: • Main Menu > General Postproc > Element Table > Define Table … • [Add…] • Lab = eseqv • Item, Comp = Stress, von Mises SEQV • [OK] • [Close] • Or issue: ETABLE,ESEQV,S,EQV October 30, 2001 Inventory #001572 W1-6

  7. 1. Array ParametersAxisymmetric Wheel 9. Plot and list the element table values. • Utility Menu > PlotCtrls > Style > Symmetry Expansion > No Expansion • Main Menu > General Postproc > Element Table > Plot Elem Table … • Itlab = ESEQV • Avglab = Yes - average • [OK] • Utility Menu > PlotCtrls > Pan,ZOOM,Rotate… • [Front] • Main Menu > General Postproc > Element Table > List Elem Table … • Lab1-9 = ESEQV • [OK] • Or issue: /EXPAND PLETAB,ESEQV,1 /VIEW,1,1,1,1 /REPLOT PRETAB October 30, 2001 Inventory #001572 W1-7

  8. 1. Array ParametersAxisymmetric Wheel 10. We now need to "upload" the element table values into an array parameter. First dimension an array with number of rows = number of elements: • Utility Menu > Parameters > Get Scalar Data … • Type of data = Model data, For selected set; then [OK] • Name of parameter = nelem • Data to be retrieved = Current elem set, Number of elem's • [OK] • Utility Menu > Parameters > Array Parameters > Define/Edit … • [Add…] • Par = sarray • Type = Array • I, J, K = nelem, 1, 1 • [OK] • [Close] • Or issue: *GET,NELEM,ELEM,,COUNT *DIM,SARRAY,,NELEM October 30, 2001 Inventory #001572 W1-8

  9. 1. Array ParametersAxisymmetric Wheel 11. Fill the array with von Mises stress values from the element table. • Utility Menu > Parameters > Get Array Data … • Type of data = Results data, Elem table data; then [OK] • Name of array parameter = sarray(1) • Elem table item to be retrieved = ESEQV • Fill array by looping on = Element number • [OK] • Or issue: *VGET,SARRAY(1),ELEM,1,ETAB,ESEQV 12. Verify the values in the array parameter. • Utility Menu > List > Status > Parameters > Named Parameter … • Par = SARRAY • [OK] • Or issue: *STAT,SARRAY October 30, 2001 Inventory #001572 W1-9

  10. 1. Array ParametersAxisymmetric Wheel 13. Calculate the standard deviation. • Utility Menu > Parameters > Array Operations > Vector-Scalar Func … • ParR = sdev • Par1 = sarray(1) • Func = Std deviatn STDV • [OK] • Utility Menu > Parameters > Scalar Parameters … • Check the value of SDEV • [Close] • Or issue: *VSCFUN,SDEV,STDV,SARRAY(1) *STAT,SDEV 14. If time permits, rerun the solution with the addition of a UX=0 constraint on the inner face of the wheel, calculate the standard deviation, and compare with the previous value. 15. Exit ANSYS. October 30, 2001 Inventory #001572 W1-10

More Related