210 likes | 234 Views
Explore the physics case, nature of neutrinos, current interactions, and collaborations for neutrinoless double beta decay experiments. Learn about the ongoing research, discoveries, and expected limits in the field.
E N D
Nu_2-WP3: R&D for neutrinoless double beta decay experiments FJPPL meeting, May 15-16 2008 Paris F. Piquemal ( CEN Bordeaux Gradignan and Laboratoire Souterrain de Modane) France:J. Argyriades, R. Arnold, G. Broudin, S. Jullian, Ch. Marquet, F. Mauger, F. Piquemal, J-S Ricol, L. Simard, X. Sarazin Labs : LAL Orsay, CEN Bordeaux-Gradignan, LPC Caen, IPHC Strasbourg Japan:N. Ishihara, Y. Yamada, M. Nomachi, H. Ohsumi,H. Ejiri, K. Fushimi, R. Hazama,Y. Sugaya Labs: KEK, Osaka U., Saga U., RCNP/OSAKA, U. Tokushima, Hiroshima U.
Double Beta decay: physics case - Leptonic number violation • - Nature of neutrino : Dirac (nn) or Majorana (n=n) • - Absolute neutrino mass and neutrino mass hierarchy • Right-handed current interaction • CP violation in leptonic sector • Search of Supersymmetry and new particles
<mn> Light neutrino exchange <mn>,<l>,<h> (V+A) current <gM> Majoron emission l’111,l’113l’131,….. SUSY Nuclear matrix element Phase space factor -1 5 T1/2= F(Qbb,Z)|M|2<mn>2 Effective mass: <mn>= m1|Ue1|2 + m2|Ue2|2.eia1 + m3|Ue3|2.eia2 |Uei|: mixing matrix element a1 et a2: Majorana phase Neutrinoless Double Beta decay (A,Z) (A,Z+2) + 2 e- Discovery implies DL=2 and Majorana neutrino Process: parameters
bb(0n) observables From G. Gratta
bb(0n) observables Light neutrino exchange V+A current Minimum electron energy MeV MeV Angular distribution betwen the 2 electrons Cosq Cosq
<mn> current and future limits . Klapdor claim HM Cuoricino NEMO3 Limits in 2009 HM,NEMO3, Cuoricino Expected limits 2011– 2015 CUORE,GERDA, Majorana, SuperNEMO, EXO, DCBA, CANDLEs…. Degenerated Inverted hierarchy Normal hierarchy Use of « latest NME » for all experiments
Japanese – french collaboration on DBD France and Japan have several experiments or projects for double beta decay searches with tracko-calo (e- identification) or calorimeter detectors Collaboration started in 2000 on tracko-calo Common subjects: bb sources, low background, calorimeter - Sources production and purification - Very low background measurements: BiPo detector - Radon detectors - Calorimeter R&D for energy resolution improvement - Electronics - Analysis (NEMO 3)
Collaborative work NEMO/SuperNEMO collaboration LAL LPC Caen CENBG IPHC NEMO3 analysis Saga U. Common R&D Radon detector LAL CENBG Saga U. Tracko-calo detector design BiPo MOON Calorimeter Electronics LAL LPC Caen CENBG Osaka U. Tokushima U. Hiroshima U. DCBA D&D KEK
Tracking detector: drift chamber (6180 Geiger cell) t = 5 mm, z = 1 cm ( vertex ) Calorimeter (1940 plastic scintillators– Low radioactive PMTs) Energy Resolution FWHM=14% (1 MeV) Shielding against gammas and neutrons Magnetic field for charge identification High radiopurity materials Identification e-,e+, Efficiency : 8% (FWHM) @ [2.7 – 3.2] MeV Running at Modane underground laboratory since 2003 sourcesthicknessmg/cm2) Bckg E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm 82Se (0,93 kg) NEMO 3: Neutrino Ettore Majorana Observatory (France, UK, Spain, Russia,USA, Japan, Czech Republic,Ukraine, Finland) Multi-source detector Unique feature:measurement of all kinematic parameters: individual energies and angular distribution E1 event e- Vertex e- E2
Phase I + II 13.3 kg.yr T1/2(bb0n) > 2. 1024 yr (90 % CL) <mn> < 0.3 –0.7 eV Expected in 2009 NEMO3: bb(0n)results for 100Mo Phase I, High radon 7.6 kg.yr Phase II, Low radon 5.7 kg.yr Number of events / 40 keV Number of events / 40 keV Number of events / 40 keV [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 11.1 events Nobserved = 11 events [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 3.0 events Nobserved = 4 events [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 8.1 events Nobserved = 7 events T1/2(bb0n) > 5.8 1023 yr (90 % C.L.) <mn> < 0.6 – 1.3 eV Phases I + II
SuperNEMO NEMO-3 150Nd or 82Se isotope 100Mo isotope massM 100-200 kg 7 kg 208Tl < Bq/kg if 82Se: 214Bi < 10 Bq/kg 208Tl: < 20 Bq/kg 214Bi: < 300 Bq/kg internal contaminations 208Tl and 214Bi in the foil energy resolution (FWHM) 8% @ 3MeV 4%@ 3 MeV T1/2() > 2 x 1024 y <m> < 0.3 – 1.3 eV T1/2() > 2 x 1026 y <m> < 50 - 90 meV From NEMO-3 to SuperNEMO M Tobs NA T1/2 () > ln 2 A N90 efficiency ~ 30 % 8 %
SuperNEMO Collaboration ~ 90 physicists, 12 countries, 27 laboratories Japan U Saga U Osaka Marocco Fes U USA MHC INL U Texas Russia JINR Dubna ITEP Mosow Kurchatov Institute UK UCL U Manchester Imperial College Finland U Jyvaskula Poland U Warsaw Ukraine INR Kiev ISMA Kharkov France CEN Bordeaux IReS Strasbourg LAL ORSAY LPC Caen LSCE Gif/Yvette Slovakia (U. Bratislava) Spain U Valencia U Saragossa U Barcelona Czech Republic Charles U Praha IEAP Praha
SuperNEMO project (France, UK, Russia, Spain, USA, Japan, Czech Republic,Ukraine, Finland) Tracko-calo with 100 kg of 82Se or 150Nd (possibility to produce 150Nd with the French AVLIS facility ?) T½ > 2. 1026 yr <mn> < 0.05 – 0.09 eV Modules based on the NEMO3 principle Measurements of energy sum, angular distribution and individual electron energy 3 years R&D program: improvement of energy resolution Increase of efficiency Background reduction ……. 100 kg 20 modules 2009: TDR 2011: commissioning and data taking of first modules in Canfranc (Spain) ? 2013: Full detector running in LSM ?
SuperNEMO Status - Large ScaleR&D funded by France, UK and Spain • Possibility to produce 100 kg of 150Nd with laser enrichment method under study • Test of tracker prototype and design of automatic winring robot • Prototype of BiPo detector to measure contaminations in thin source foils with 1uBq/kg sensitivity running in Modane underground laboratory (France) • 7% FWHM at 1 MeV reached for individual plastic and liquid scintillator samples. R&D towards bigger block sizes and large production scale underway - Simulations in progress
232Th 238U 212Po 214Po β (164 µs) 212Bi (60.5 mn) 214Bi (19.9 mn) α Bi-Po effect 208Pb (stable) 210Pb 22.3 y 36% 0.021% 208Tl (3.1 mn) 210Tl (1.3 mn) (300 ns) β SuperNEMO: BiPo detector principle Radiopurity measurement of 10m² of foils (40 mg/cm²) with sensitivity in a month : < 2 µBq/kg for 208Tl and < 10 µBq/kg for 214Bi - bulk contamination 2 prototypes: BiPo1 and BiPo2 Japan involve in BiPo development based on the MOON experience MOON 1
e α Design of the optical guides by MC & test bench At every step, extreme precaution with the radiopurity of the processes and the materials. SuperNEMO: BiPo II detector /15 2. BiPo II Proto 3. Prel. study 3. DAQ 4. Future sch.
SuperNEMO: BiPo II detector BiPo 1 running in Laboratoire Souterrain de Modane (Fréjus) BiPo2 in test In LAL Orsay, in LSM in few weeks
Summary Previous activities: - NEMO 3 analysis of 48Ca - Radon detector (sensitivity 1 mBq/m3) - Energy resolution measurement of scintillator plates at CENBG - Test of vertex localisation with MOON prototype in Osaka - Test of BiPo2 in LAL Orsay and installation of BiPo 1 in LSM - Low radioactive techniques On-going activities: - NEMO 3 analysis -bb sources - Calorimeter R&D: Energy resolution improvements and electronics - BiPo contruction, running and analysis - Low radioactive techniques