340 likes | 551 Views
Energy Efficiency in Serbian Industry – Implementation of Cleaner Production. Cleaner Production Centre of Serbia Faculty of Technology and Metallurgy, University of Belgrade. Cleaner Production in Serbia. Cleaner Production Centre established in 2007 as UNIDO Project
E N D
Energy Efficiency in Serbian Industry – Implementation of Cleaner Production Cleaner Production Centre of Serbia Faculty of Technology and Metallurgy, University of Belgrade
Cleaner Production in Serbia • Cleaner Production Centre established in 2007 as UNIDO Project • funded by Federal Government of Austria and Government of the Republic of Slovenia • Part of the Faculty of Technology and Metallurgy, University of Belgrade • external consultants, Advisory Bord • support of Ministry of Environment and Serbian Chamber of Commerce Inauguration of the Serbian Cleaner Production Centre on the 6th Ministerial Conference“Environment for Europe” October 11, 2007, Belgrade
Cleaner Production Definition “The continuous application of an integrated preventive environmental strategy applied to processes, products, and services to increase overall efficiency and reduce risks to humans and the environment.” (United Nations Environment Programme)
Workshops for the industry on cleaner production Around 300 people from 60 participating companies attended workshops
CP in companies - visits • Informational meetings • Quick scan audits by NE • Energy audits by EE • CP detailed assessments by IE and NE • Consulting on collecting data and defining CP options Agrosava CP Assessment Bambi – Banat CP Assessment Stark – meeting of CP team and experts Detailed CP and energy assessments were carried out in 60 companies
CP in companies – evaluation and implementation • List of CP options and Action plan for implementation of proposed options • Submission of Report and its evaluation • CP award • Monitoring and continuation CP Award Ceremony in Serbian Chember of Commerce In total 57 companies from different sectors were awarded
Resource Efficiency and Cleaner Production (RECP) Project in EPS (Power Company of Serbia) – part I In total, seventy-six RECP options were identified and preliminary results (50 % of options evaluated) show that with investment of 164,000,000 € folowing consumption reductions could be reached: Lignite: 330,000 t/year, Water for 700,000 m3/year, Electricity for 20 GWh/year, CO2 emission for 200,000 t/year Ash (waste) for 2,000,000 t/year
Cooperation with Municipalities Local authorities in Pancevo and Cacak signed an agreement with the Cleaner Production Center of Serbia on the introduction of cleaner production City of Pancevo: 10 companies – petrochemical company, waste electrical and electronic equipment recycling and 8 Public Utility companies 11 local consultants • City of Cacak: • 7 companies, the building of the municipality and two schools • City of Pancevo – second phase: • 5 private companies
Cleaner Production practices 1. Good housekeeping take appropriate managerial and operational actions to prevent: - leaks - spills - to enforce existing operational instructions
Example 25% of total length of pipes for hot water distribution were not well insulated Reduction of coal by 6,000 tons and CO2 by 11,200 tons Investment: 155,000 EUR Savings: 125,000 EUR Payback period: 1.2 years
Cleaner Production practices 2. Input substitution substitute input materials - by less toxic - or by renewable materials - or by adjunct materials which have a longer service life-time in production
Cleaner Production practices 3. Better process control modify: - operational procedures - equipment instructions and process record keeping in order to run the processes more efficiently and at lower waste and emission generation rates
Example Installation of gas and electricity meters/ Installation of computer-based monitoring program By continuous monitoring and recording of consumption of the main water and energy consumers (boiler, makeup water for chillers, hot water generation, slaughterhouses, meat processing, trucks cleaning, temporary houses), monitoring production related specific indicators, and training of operators, it is assessed the company could reduce energy and water consumption by 5 - 10%. Comparing to current consumption of 500.000 m3 of water, 4,317,598 m3 of gas and 27,879 MWh of electricity it could bring savings up to 50,000 m3/year of water, 215,000 m3 of gas and 1.35 GWh of electricity. This leads to reduction of CO2 by 920 t. Investment: 60,000 EUR (total cost) Savings: 236,000 EUR (188,000 for energy and 48,000 for water) Payback period: 3 months
Cleaner Production practices 4. Equipment modification modify the existing production equipment and utilities in order: - run the processes at higher efficiency - lower waste and emission generation rates
Example Even while the project was still ongoing, the company started to implement some of the cleaner production options: exhausted capacitor batteries were replaced, the return of investment of 5,400 EUR was 9 months the process of purchasing an industrial suction dust remover in order to replace the current practice of cleaning with compressed air was initiated, 9,000 kWh electricity was reduced One of the cleaner production options is installation of the system for automatic boiler desludging. It is estimated that annual consumption of steam amounts to 5,700 tons. Losses in steam consumption caused by manual desludging stand at around 15%, while automatic desludging would reduce these losses to 3-5%. This would lead to gas savings of 12,000 m3 per year. Investment 12,000 EUR; estimated savings 4,300 EUR
Example Condensate from the two heating substations has been discharged into the sewer system. Measurements of the discharged condensate quantities have shown that resulting heat loss, expressed in terms of fuel consumed, is equivalent to heavy oil consumption of 21 t over the heating period. A carried out reconstruction has provided for a condensate, which has been discharged from the system for years, to be returned into the process (collector and a pump for condensate transport). Apart from the expected financial benefits resulting from reduced heavy oil consumption of 21 t/a, described measure has also contributed to environmental improvements observed through annual reduction of CO2 emission equal to 68 t/a.
Cleaner Production practices 5. Technology change replacement of: - the technology - processing sequence - synthesis pathway in order to minimise waste and emission generation during production
Case Study - Petrohemija For instance, in the Ethylene Factory, by investing only 1,000 € and changing the type of steam used for flushing of pyrolytic furnaces, the savings of around 120,000 € were achieved, i.e. the consumption of feeding boiler water was reduced by around 30.000 t per year, and the consumption of chemicals was reduced by around 20-30 t per year.
RESULTS: • So far, (2006-2012) total of 60 companies participated • Average savings per company: 100,000 EUR/year • Average decrease of water consumption: 50,000 m3/year • Average decrease in electrical power consumption: 500 MWh/year • Average decrease in CO2 emission: 500 t/year