1 / 12

Differential Equations

Mathematical Modeling and Simulation. Differential Equations. Using MATLAB. (Plus Symbolic Mathematics). Prof. Muhammad Saeed. Symbolic Math syms x y z a b ; 1. Expansion: expand((x+a)^3); expand(sin(a+b)); 2. Factorization: factor(a^2-b^2); 3. Series Summation: syms k n;

tammy
Download Presentation

Differential Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematical Modeling and Simulation Differential Equations Using MATLAB (Plus Symbolic Mathematics) Prof. Muhammad Saeed

  2. Symbolic Math • syms x y z a b ; • 1.Expansion: • expand((x+a)^3); expand(sin(a+b)); • 2.Factorization: • factor(a^2-b^2); • 3.Series Summation: • syms k n; • symsum(k,0,10);symsum(k^2,1,4);sysmsum(k,0,n-1) • 4.Substitution: • Expr=x^2+6*x+9; subs(Expr,x,2); subs(Expr,x,a); • 5.Solution of Equations: • solve(‘3*x^3+2*x^2-4*x+12=0’); • solve(3*x^3+2*x^2-4*x+12); • solve(‘sin(2*x)-cos(x)=0’); • 6.Solution of Simultaneous Equations: • eqn1=‘4*x+3*y=5’; eqn2=‘2*x+2*y=-3’; • S=solve(eqn1,eqn2); { S.x, S.y} • S=solve(eqn1,eqn2, …….);

  3. Symbolic Math: • 7.Limit: • limit(sin(x)/x) • f = sin(x)/x; • limit(f); limit(f,a); limit(f, x,a,); limit(f,x,a,’right’); • limit(f,x,a,’left’); • 8.Taylor Series: • f=exp(x); taylor(f, 5); taylor(f, 5,2); • 9.Graph Plot: • ezplot(f, [-3 3]) • 10.Differentiation: • syms x n; • diff(x^n) • diff(‘(sin(x))^2’) • diff(x*sin(x*y), y, 2)

  4. Symbolic Math: • 11. Integration: • syms x y n a b • int(x^n); • int(x^n, n); • int(xy^2,y,0,4); • int(x^3, a,b); • 12.Laplace Transform: • syms s b t w x; • laplace(t^3); • laplace(exp(-b*t)); laplace(exp(a*s)) ; • laplace(sin(w*x),t); laplace(cos(x*w),w,t); • laplace(diff(sym('F(t)')))

  5. Symbolic Math: • 13. Inverse Laplace Transform: • ilaplace(1/s^3); • ilaplace(1/(s+b); • ilaplace(b/(s^2+b^2)); • 14.More to study: • fourier, ifourier, • ztrans, iztrans, • sym, • poly2sym, sym2poly • findsym, • simplify, • collect • See for DE solution using Laplace Transform: DESymb.m

  6. Symbolic Solution of Differential Equations: • ∆ dsolve(‘Dy+2*y = 12’) • ∆ dsolve(‘Dy = sin(a*t)’) • ∆ dsolve(‘D2y = c^2*y’) • ∆ [x, y] = dsolve(‘Dx = 3*x+4*y’, ‘Dy = -4*x+3*y’) • ∆ dsolve(‘Dy = sin(a*t)’, ‘y(0) = 0’) ; { ‘y(0) = c’ } • ∆ dsolve(‘D2y = c^2*y’,’y(0) = 1’,’Dy(0) = 0’) • ∆ [x, y] = dsolve(‘Dx = 3*x+4*y’, ‘Dy = -4*x+3*y’,’x(0) = 0’,’y(0) = 1’) • ∆ dsolve(‘D2y+9*sin(y) = 0’,’y(0) = 0’,’y(L) = 0’)

  7. Numeric Solution of Differential Equations: • 1. Euler’s Method. Example: DEEulersMethod.m • 2. MATLAB ODE Solvers

  8. Numeric Solution of Differential Equations: • a) DE’s Of Order 1: • [t, y]=solver(‘func’,[ti tj], y(i)) • function ydot=funcName(t,y) • ydot= f(y,t)………. ; • end • ODE’s: • b) DE’s Of Order 2: • [t, x]=solver(‘function’,[ti, tj],[y(i), y(j)]) • function xdot=funcName(t,x) • xdot(1)=x(2) • xdot(2)= func( x(1), x(2), t ) • xdot=[xdot(1);xdot(2)]; • end; • ODE: ,van der Pol Eqn.

  9. Numeric Solution of Differential Equations: Examples: I. DE’s Of Order 1 function ydot = DEorder1_01(t,y) ydot = sin(t); end [t,y] = ode23(‘DEorder1_01’, [0, 4*pi], 0); Analytic Solution ‘ y= 1-cos(t) ‘

  10. Numeric Solution of Differential Equations: Examples: 2. DE’s Of Order 2 ( van der Pol Eqn. ) function ydot = vdpol(t,y) mu = 2; ydot(1) = y(2); ydot(2) = mu*(1-y(1)^2)*y(2) – y(1); ydot = [ydot(1); ydot(2)]; end [t,y] = ode45(‘vdpol’, [0, 20],[2; 0]);

  11. Numeric Solution of Differential Equations: Examples: 2. DE’s Of Order 2 ( van der Pol Eqn. ) function ydot = vdpol2((t,y,mu) ydot(1) = y(2); ydot(2) = mu*(1-y(1)^2)*y(2) – y(1); ydot = [ydot(1); ydot(2)] end options=odeset(‘Refine’,4); [t,y] = ode45(‘vdpol’, [0, 20], [2; 0], options, 2);

  12. END

More Related